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I. Setup: CPD and Jennrich’s Algorithm

I.1 Decompose signal into canonical components.

A tensor T is a multiindexed array.

T = ∈ RN1×N2×N3

Canonical Polyadic Decomp. expresses T as minimal sum of rank 1 terms.

T =
∑R

r=1 ar ⊗ br ⊗ cr = + · · · + =

R is the rank of T .

Notation: ar, br, cr are vectors of length N1, N2, N3, respectively.

Simplifying assumption: N1 = N2 = N3 = R. I.e. assume T has low rank.

I.2 Jennrich: Eigenvector decomposition gives CPD.

Key idea: Columns of  ↑ ↑
b1 · · · bR
↓ ↓

−T

are equal to eigenvectors of T−1
k T` which in turn are equal to generalized

eigenvectors of the matrix pencil (Tk, T`).
=⇒ Generalized eigenvector decomp. of (Tk, T`) leads to CPD of T .
Notation: Tk is the R × R matrix (tijk)i,j=1,...,R.

I.3 Small eigenvalue gaps leads to instability.

Gen. eigenvalues of (Tk, T`) are interpreted as points on the unit circle.
The pencil (Tk, T`) has R generalized eigenvalues.

Small gaps between gen. eigenvalues causes instability in computing gen.

eigenvectors. =⇒ Instability of Jennrich’s algorithm as R grows.

     = generalized eigenvalue of              .

The small gap between generalized eigenvalues 
1 and 2 leads to instability in computing the 
generalized eigenvectors        and      . 

Similar issues occur in the other clusters of 
generalized eigenvalues.
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Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

1

2

4

5
6

7

8

9

10

Illustration of generalized eigenvalues of

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

In fact, using a single pencil to compute a CPD is a fundamental source of instability in

Jennrich’s algorithm. This effect is quantified by Beltrán, Breiding, and Vannieuwenhoven.

GESD combats this effect by using multiple pencils for CPD computation.

II. Generalize EigenSpace Decomp.

II.1 Improve stability by computing eigenspaces
corresponding to well separated eigenvalue clusters

Consider following clusters of generalized eigenvalues of (Tk, T`).
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Clusters C1, C2, C3, C4 are well separated so can improve stability
by only computing the corresponding eigenspaces E1, E2, E3, E4.

Next step: Recover vectors v1, v2 from eigenspace E1 = span{v1, v2}.

II.2 Use a new pencil to split eigenspaces!

Consider a new subpencil (Tm, Tn) of T . The eigenvectors of this pencil
are the same as those of (Tk, T`), but the corresponding eigenvalueswill
lie in new positions on the unit circle.

Now the clusters C′
1, C′

2, C′
3, C′

4 are well separated so compute the
corresponding eigenspaces E ′

1, E ′
2, E ′

3, E ′
4.

Observe E1 = span{v1, v2} and E ′
1 = span{v1, v3, v6}. Thus v1 = E1∩E ′

1.

II.3 GESD recursively deflates tensor rank.

In practice, GESD recursivelywrites T as a sum of tensors of reduced rank.
In our example, GESD uses E1, E2, E3, E4 to write the rank 10 tensor T as

T = T 1 + T 2 + T 3 + T 4

where T 1, T 2, T 3 and T 4 have ranks 2, 3, 1 and 4, respectively. T 1 can then
be decomposed into a sum of rank 1 tensors using the pencil (T 1

m, T 1
n ).

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as

described above rather than working recursively.

III. QZ CPDmethod: Avoiding inverses

III.1 Jennrich’s algorithm computes an unnecessary
inverse.

Jennrich’s algorithm computes the inverse of the matrix of eigenvectors of

a pencil (Tk, T`).
Inverse computation can be avoided by considering “joint generalized

eigenvalues” instead of eigenvectors.

III.2 QZ decomposition basics.

QZ decomposition is generalization of the Schur decomposition to matrix

pencils.

Given a matrix pencil (Tk, T`), QZ computes orthogonalQ and Z such that

QTkZT and QT`ZT

are both upper triangular matrices.

Similar to the matrix setting, generalized eigenvalues of (Tk, T`) are given
by the diagonal entries of (QTkZT, QT`ZT)
Computing a QZ decomposition is a standard step in a generalized eigenvalue decompo-

sition. E.g. Matlab’s eig routine applied to matrix pencils starts with a QZ decomposition.

III.2 A single QZ decomposition recovers a factormatrix!

For generic low rank tensors T , a QZ decomposition of a subpencil can
be used to simultaneously upper triangularize all frontal slices of T .
If Q, Z are orthogonal matrices such that

QTkZT and QT`ZT

are both upper triangular matrices, then

QTrZT

is upper triangular for all r = 1, . . . , R.

In this case, the jth entry of cr is the jth diagonal entry of QTrZT.

In fact, a second QZ can be used to reveal a second factor matrix.

Extending the matrix pencil case, vectors on the diagonal of the upper triangular tensor

T ·1 Q ·2 ZT can be naturally interpreted as “joint generalized eigenvalues” of T . In this
framework, the joint generalized eigenvectors of T are equal the to vectors c1, . . . , cR.

III.3 Upper triangular slices leads to triangular factors.

Let A be a matrix with columns a1, . . . , aR and similarly define B and C.
If Tr is upper triangular for each r, then (in an appropriate ordering of
columns) A and BT are both upper triangular matrices. The QZ CPD algo-
rithm then easily follows from

Tr = ADr(C)BT for all r = 1, . . . , R.

Here Dr(C) is a diagonal matrix with entries given by the rth row of C.

IV. Numerical results

IV.1 Performance of methods for various tensor ranks.
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Figure 1. Single QZ is a direct improvement on Jennrich’s algorithm (as implemented in

Tensorlab’s cpd_gevd). GESD is the most accurate but slowest method. Multi QZ is the

fastest but least accurate method.

IV.2 Performance against fixed tensor rank.
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Figure 2. Accuracy against Rank 35 tensors with 120 dB SNR.
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