Improving on the stability Jennrich’'s algorithm
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|. Setup: CPD and Jennrich's Algorithm ll. Generalize EigenSpace Decomp. lll. QZ CPD method: Avoiding inverses V. Numerical results
l.1 Decompose signhal into canonical components. Il.2 Improve stability by computing eigenspaces lll.1 Jennrich’s algorithm computes an unnecessary IV.1 Performance of methods for various tensor ranks.
. i} corresponding to well separated eigenvalue clusters inverse.
A tensor T is a multiindexed array. Multi QZ
u
— Consider following clusters of generalized eigenvalues of (T}, T)). Jennrich’s algorithm computes the inverse of the matrix of eigenvectors of 10-11 |
T - RNIXNox Ny a pencil (T, Ty).
Inverse computation can be avoided by considering “joint generalized = 10—12
Canonical Polyadic Decomp. expresses T as minimal sum of rank 1 terms. eigenvalues” instead of eigenvectors. =
B Cy o
7 Vs oy : 13 |
i —— ——= lll.2 QZ decomposition basics. 10
T=>, 12 b, ®c, = + -0+ = GESD
QZ decomposition is generalization of the Schur decomposition to matrix 1
Ris the rank of T pencils. 10 —
: - - 4 3 12 16 20 24 28 32 36 40
G t | (T, Ty), QZ t th | d Z such that
Notation: a,, b,, ¢, are vectors of length Ny, No, N3, respectively. ven a matrix pencil (T, €>TQ ~OMPULES OF OTgOﬂa Qan PR Tensor Rank
simplitying assumption: Ny = Nz = N3 = R. |.e. assume T has low rank. Clusters Cq, Cy, Cs3, Cy are well separated so can improve stability | QT2 | and QTZ
_ _ - _ by only computing the corresponding eigenspaces &1, &, &3, E. are both upper triangular matrices. 10-11
l.2 Jennrich: Eigenvector decomposition gives CPD. | - . . . . . |
Key idea: Columns of by the diagonal entries of (QTkZT, QTgZT) »
0 1 -1 1.2 Use a new penci[ to sp[it eigenspaces! Computing a QZ decomposition is a standard step in a generalized eigenvalue decompo- oqé 5
by --- bR sition. E.g. Matlab’s eig routine applied to matrix pencils starts with a QZ decomposition. = 10
1 1 Consider a new subpencil (T, Tj,) of T. The eigenvectors of this pencil
a}re.the same a.s.those of (T4, Tg),’ but the corresponding eigenvalues will l11.2 A single QZ decomposition recovers a factor matrix! Multi QZ
are equal to eigenvectors of T;ng which in turn are equal to generalized lie in new positions on the unit circle.
eigenvectors of the matrix pencil (T}, T)). / kfor ger(wjetnc I.ovv lr;:ank tenlsors T, atQZ delc:ompolsl|t;on tof| alsubpefn;:ll can 10 1 S 12 16 20 24 93 39 36 40
—> Generalized eigenvector decomp. of (T}, Ty) leads to CPD of T. 1 = HoE0 D SITURANELUST UPPET HAligHiatlze <l TONTET SHLES OF - Tensor Rank
o | It Q, Z are orthogonal matrices such that
Notation: Ty is the 12 x R matrix (tiji)ij-1....x- T T Figure 1. Single QZ is a direct improvement on Jennrich'’s algorithm (as implemented in
QTkZ and QT@Z Tensorlab’s cpd_gevd). GESD is the most accurate but slowest method. Multi QZ is the
.3 Small eigenvalue gaps leads to instability. are both upper triangular matrices, then fastest but least accurate method.
T
Gen. eigenvalues of (T}, Ty) are interpreted as points on the unit circle. QT 7 _
The pencil (T}, T;) has R generalized eigenvalues. is upper triangular forallr =1,..., R. IV.2 Performance against fixed tensor rank.

Small gaps between gen. eigenvalues causes instability in computing gen. In this case, the jth entry of ¢, is the jth diagonal entry of QT,Z'.

Rank 35, SNR 120 dB

eigenvectors. = Instability of Jennrich's algorithm as I grows. Now the clusters C1, Cs, C5, Cy are well separated so compute the In fact, a second QZ can be used to reveal a second factor matrix. 109 +
corresponding eigenspaces &/, &), &4, &) 5 $ —— ;
: : : P 5 €IS P 51, 82’ 53’ 54 Extending the matrix pencil case, vectors on the diagonal of the upper triangular tensor * i | |
lllustration of generalized eigenvalues of (T, T;) / / . o . _ . 10~1 1 —
2 Observe £ = span{vy, vo} and &1 = span{vi,vs,vg}. Thusvy = E1NE;. T -1 Q-2 Z' can be naturally interpreted as “joint generalized eigenvalues” of 7. In this : ’
10 - | . :
9 ® — generalized sigenvalue of (T, Ty). framework, the joint generalized eigenvectors of T are equal the to vectors cy, ..., cg. 10 i
1.3 GESD recursively deflates tensor rank. S e . b
8 The small gap between generalized eigenvalues |"3 Upper trlangular slices leads to trlangular factors. ) 1073 ——
. 1 and %l'ezdslto inStatb”it.\/ in Corfgjpu“ng the In practice, GESD recursively writes T as a sum of tensors of reduced rank.
3 JONeralzedeigenvecions i and va. . Let A be a matrix with columns and similarly define B and C _
In our example, GESD uses &7, &9, €3, £4 to write the rank 10 tensor T as . . A5 AR v e . ' 1074 i
Similar issues occur in the other clusters of 1 ) ] ) if 7, is upper triangular for each r, then (in an appropriate ordering of
generalized eigenvalues. T=T +T"+T°+T columns) A and B! are both upper triangular matrices. The QZ CPD algo- 105 | | | | |
where Tt 72 73 and T have ranks 2, 3, 1 and 4, respectively. 71 can then rithm then easily follows from Single QZ Multi QZ GEVD GESD
. . . 1 1
In fact, using a single pencil to compute a CPD is a fundamental source of instability in be decomposed into a sum of rank 1 tensors using the pencil (7, 7,,). T, = ADT(C)BT for all r=1,...,R.
Jennrich's algorithm. This effect is quantified by Beltran, Breiding, and Vannieuwenhoven. Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as Here D,-(C) is a diagonal matrix with entries given by the rth row of C. Figure 2. Accuracy against Rank 35 tensors with 120 dB SNR.

GESD combats this effect by using multiple pencils for CPD computation. described above rather than working recursively.
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