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Decompose signal into canonical components.

A tensor T is a multiindexed array.

T = ∈ RN1×N2×N3

Canonical Polyadic Decomp. (CPD) expresses T as minimal sum of
rank 1 terms.

T =
∑R

r=1 ar ⊗ br ⊗ cr = + · · · + =

R is the rank of T .

Notation: ar ,br , cr are vectors of length N1,N2,N3, respectively.
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In practice measured signal tensors are corrupted by noise. Must
compute a low rank approximation

A common problem in applications: Given M = T +N of size
I1 × I2 × I3 where T is a rank R signal tensor, compute a best rank
(less than or equal to) R approximation of M.

Intuition: Computing rank R approximation allows (approximate)
recovery of T from M.

Low rank tensor approximation is ill-posed: A best rank ≤ R
approximation may not exist.

This leads to considering the set of border rank ≤ R tensors. This is
the closure of the set of rank R tensors.
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What is border rank and why?

Why care:

1. Optimization always has solution over border rank R tensors.

2. Decomposition is uninterpretable if solution has rank > border
rank.

Tensor phenomena: Limit of rank 2 tensors could have rank 3.

E.g.

lim
n→∞

n(e1)⊗3 − n
(
e1 +

e2
n

)⊗3
In general: T has border rank R means:

1. T is a limit of rank R tensors.

2. T is not a limit of tensors having rank < R.
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Commonly proposed “solutions” if best approximation has rank >
border rank have issues.

Common suggestions are:

1. Take close to optimal approximation: Suffers from diverging
components

2. Increase rank: Can lose uniqueness of decomposition.

3. Impose constraints: Solution will always be on boundary of
constraint.
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Recap

Tensor approximation always has best approximation over border rank
R solutions

Rank > border rank leads to big problems for interpretation

1. Diverging components

2. Loss of uniqueness

3. Artificially chosen solution.

Need good, meaningful solutions!
Need guarantee solution has rank = border rank.
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Start by understanding R × R × 2 examples. A good case: Distinct
generalized eigenvalues

Write T1 = T (:, :, 1) and T2 = T (:, :, 2).

Let T be defined by

T1 =

(
1 0
0 1

)
T2 =

(
1 0
0 −1

)
has T−12 T1 =

(
1 0
0 −1

)

T−12 T1 eigenvalues 1 and −1 and eigenvectors e1 and e2.

The tensor has real rank 2.
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A bad case: Repeated generalized eigenvalues

Let T be defined by

T1 =

(
0 0
0 1

)
T2 =

(
0 1
1 0

)
has T−12 T1 =

(
0 1
0 0

)

T−12 T1 eigenvalue 0 (with algebraic multiplicity 2) and eigenvector e1.

The tensor has rank > 2 and border rank 2.

This tensor is the limit of the first example I showed.
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Story for R × R × 2 tensors is completely told by generalized
eigenvalues.

The generalized eigenvalues and generalized eigenvectors of T are
(essentially) equal to the classical eigenvalues and eigenvectors of the
matrix

T−12 T1

Theorem: T ∈ RR×R×2 has rank R IFF T has a basis of generalized
eigenvectors.

Idea: To guarantee rank = border rank, use perturbation theory for
generalized eigenvalues to guarantee perturbation has distinct
generalized eigenvalues.
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An existence bound for R × R × 2 tensors

Theorem

Let T and T̂ be tensors of size R × R × 2. Assume that T has R-rank
R with CPD JA,B,CK. If

‖T − T̂ ‖sp <
σmin(A)σmin(B) mini 6=j χ(Ci ,Cj)

2
,

then T̂ has R-rank R and

md[T , T̂ ] <
‖T − T̂ ‖sp

σmin(A)σmin(B)
. (1)
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A perturbation bound for R × R × K tensors. The tensor Bauer-Fike
theorem.

Theorem

Let T , T̂ ∈ RR×R×K be rank R tensors and let T = JA,B,CK. Then

sv[T , T̂ ] ≤
√
R‖(T − T̃ ) ·1 A−1 ·2 B−1‖sp ≤

√
R‖T − T̂ ‖sp

σmin(A)σmin(B)
.
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Getting an existence bound in the R × R × K setting

Key ideas:

1. Show best border rank R approximation T̂ has rank R.

2. If T̂ has border rank < rank, then every subpencil of T̂ must have
a repeated generalized eigenvalue.

3. If T̂ has border rank < rank, then so does T̂ ·3 U for any
invertible matrix U.
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A multiple pencil based bound for existence

Theorem

LetM∈ RR×R×K be any tensor. For each i = 1, . . . , bK/2c, let
εi ≥ 0 the bound computed using the K = 2 theorem for the pencil

(M2i−1,M2i )

and set ε = ||(ε1, . . . , εbK/2c)||2. If there exists some R-rank R tensor
T ′ such that

‖M− T ′‖F < ε,

thenM has a best R-rank R approximation and any best R-rank R
approximation ofM has a unique CPD.
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Explanation of the Theorem

1. A best border rank R approximation T̂ of M is guaranteed to
exist.

2. Have ‖T̂ −M‖F ≤ ‖T ′ −M‖F < ε

3. This implies there is an index i so that

‖(T̂2i−1, T̂2i )− (M2i−1,M2i )‖ < εi

4. The subpencil (T̂2i−1, T̂2i ) cannot have a repeated generalized
eigenvalue.

5. The tensor T̂ must have rank = border rank = R.
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A multiple pencil based bound for existence (improved version)

Theorem

LetM∈ RR×R×K be any tensor. Let U ∈ KK×K be a unitary matrix
and set S =M ·3 U. For each i = 1, . . . , bK/2c, let εi ≥ 0 the bound
computed using the K = 2 theorem for the pencil

(S2i−1,S2i )

and set ε = ||(ε1, . . . , εbK/2c)||2. If there exists some R-rank R tensor
T ′ such that

‖M− T ′‖F < ε,

thenM has a best R-rank R approximation and any best R-rank R
approximation ofM has a unique CPD.
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SNR at which tensors of various sizes are guaranteed
(in experiments) to have a best rank R approximation
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Proportion of I × I × I tensors T +N with truncated MLSVD
guaranteed to have a best rank R approximation
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Bonus: The tensor Procrustes problem

This talk: R × R × K tensors. In general I1 × I2 × I3 is okay.

Key ingredient: The tensor Procrustes problem.

Theorem

Let T , T̂ ∈ RI1×···×I` be tensors having the same multilinear rank.
Then there exist orthogonal compressions T c , T̂ c

of T and T̂ ,
respectively, such that

‖T c − T̂ c‖F ≤ ‖T − T̂ ‖F .
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Contributions

Deterministic method for showing that a tensor has a best rank R
approximation.

Tensor decomposition is stable and well-posed in a computable
neighborhood around a given rank R tensor.

Guarantees that a decomposition will not suffer from the dreaded
diverging components or loss of uniqueness.
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