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Convex Combinations

Given a set C C IR€ and a finite collection of tuples {x‘} C C where x* = (x{, x5, ... ,xg)
and coefficients ay > 0 a convex combination is a sum of the form

k k
ZO[[XZ c R& such that Zae =1
(=1 =1

The convex hull of a set C is the set of all convex combinations of C. Say C is convex if it
is closed under convex combinations.

A point x € C is an extreme point of C if it cannot be expressed as a nontrivial convex
combination of elements of C.



Convex sets have many nice properties

Theorem [Carathéodory (also see Krein-Milman)]

Let C C R& be a closed bounded convex set. Then C is the convex hull of its extreme
points.

Furthermore, every element of C can be expressed as a convex combination of at most
g + 1 extreme points of C.



Linear matrix inequalities give convex sets

A (monic) linear pencil is a matrix valued function L 4 of the form
g
La(x) :=1g = > Ajxj = lg — Aa(x),
j=1
where A = (Ay,...,Ag) with each A; symmetric d X d and x = (x1,...,xg) € R&
A Linear Matrix Inequality (LMI) is one of the form:

La(x) =0, ie., La(x) is positive semidefinite.

The set of solutions x above is a convex set called a spectrahedron. Spectrahedra are the
feasibility domains of convex optimization problems called semidefinite programs (SDP).



Spectrahedron example

Take A = <é _01> and A, = <(1) (1)) Then

o . 1 0 . 01 . 1—X1 —X2
Lal) =1 <0 1>X1 <1 0>X2_<X2 1+x1>

Observe L 4(x) = 0 IFF det(La(x)) =1 — x? — x3 > 0. So L4(x) defines circle in R?.



Dimension free sets

Let SM,(IR)& denote g-tuples of real symmetric n X n matrices. l.e. if X € SM,(R)& then
X = (X1, Xa,...,Xg)

where each X; is a symmetric n X n matrix.



Dimension free sets

Let SM,(IR)& denote g-tuples of real symmetric n X n matrices. l.e. if X € SM,(R)& then
X = (X1, Xa,...,Xg)

where each X; is a symmetric n X n matrix.

Define SM(R)& = U2 ; SM,(R)8. A subset of SM(R)& is a dimension free set.

Our goal: Study solution sets of linear matrix inequalities over SM(R)&.



Free Linear matrix inequalities

A free (monic) linear pencil is a matrix valued function L4 of the form

g
La(X) =g — > A; @ Xj = lgy — Aa(X),
j=1

where A € SMy(R)& and X € SM,(R)&. Here ® denotes the Kronecker Product. E.g.
4 5 4 5
o e (0253
3 4 5 2) 3 4 5 4 4 5
5 2 5 2

A Free Linear Matrix Inequality (LMI) is one of the form:
La(X) = 0.



Free spectrahedra

For each fixed n the solution set

Da(n) ={X € SMu(R)® : La(X) =gy — Zg:Aj ®X; = 0}
j=1

is called a free spectrahedron at level n.

The set D4 = UpDa(n) C Up,SM,(R)E is called a free spectrahedron.

If A a tuple of simultaneously diagonalizable matrices, then D 4 is called free polyhedron.



Matrix Convex Combinations

Given a finite collection of tuples {X*} C SM(R)& where X* = (X{,... ,Xé) € SM,,(R)8,
a matrix convex combination is a sum of the form

k k
> VXV, € SMy(R)E suchthat > V]V, =1,
=l /=1

Here the V, are ny x n matrices which serve as convex coefficients, and

V] XV, = (V] XV, .. VI XEV)).



Matrix Convex Combinations
Given a finite collection of tuples {X*} C SM(R)& where X* = (X{,... ,Xé) € SM,,(R)8,
a matrix convex combination is a sum of the form

k k
> VXV, € SMy(R)E suchthat > V]V, =1,
=l /=1

Here the V, are ny x n matrices which serve as convex coefficients, and

V] XV, = (V] XV, .. VI XEV)).

For K C SM(R)# let co™®(K) denote the set of matrix convex combinations of K. Say K
is matrix convex if it is closed under matrix convex combinations, i.e., if K = co™(K).

Say K is bounded if there exists a M > 0 such that Ml — Y% | X2 = 0 for all
X =(Xy,...,Xg) €K,



Matrix convex combinations allow for convex combinations of tuples of different sizes
For example, if X' € SM,,,(R)¢ and X2 € SM,,,(R)& and
Vz— = (Inl 0n1><n2) and V;— = (0n2><n1 Inz)a

then

xt o
VXV + Va2V, = xto a2 = ( 5 XQ) and  V/Vi+VIVo=1l,.p.

10



Matrix convex combinations allow for convex combinations of tuples of different sizes
For example, if X' € SM,,,(R)¢ and X2 € SM,,,(R)& and
V1T = (Inl 0n1><n2) and V;— = (0n2><n1 Inz)a

then

1
VXV + Va2V, = xto a2 = (25 )32) and  V{Vi+VIVo=1,n.

On the other hand, if X € SM,(R)#, and V € R™™ and VTV = I, then
VTXV € SM,(R)#

is a matrix convex combination of X.

10



Matrix convex combinations vs dilations

Given a finite collection of tuples {X*}5_; C SM(R)& and matrices Vy € My, »n(R) such
that V]V, = 1,,, define

X=X and VT =(v] ... V]).
Then

k
Zv}xﬁvg =Vv'xv and V'V=1L
(=il

11



Sets defined by Free LMI are matrix convex

Free spectrahedra are matrix convex.

Theorem [Helton-McCullough 12]

Let p be a noncommutative polynomial and let D, be the component containing 0 of
{X € SM(R)8|p(X) = 0}. If Dy is matrix convex, then D, is a free spectrahedron.

Question: What is the right notion of extreme point for matrix convex sets (and in
particular for free spectrahedra)?

12



Extreme points of matrix convex sets

Say X is a matrix extreme point of K C SM(R)& if X cannot be expressed as a nontrivial
matrix convex combination of elements of K which have size less than or equal to X .

Say X is a free (absolute) extreme point of K C SM(RR)& if X cannot be expressed as a
nontrivial matrix convex combination of any elements of K.

13



Matrix extreme vs free extreme

Let K C SM(RR)& be a (level-wise) closed bounded matrix convex set

Matrix extreme points Free extreme points

1. Always span K through matrix convex 1. Can fail to exist. (E 18, Passer 22)

binations. (Webster-Winkler 99
combinations. (Webster-Winkler 99) 2. Necessarily a minimal spanning set if

2. Not necessarily a minimal spanning set. they span.

3. Carathéodory bound: X c K(n) can be 3. Carathéodory bound: If K is a fl’ee

expressed as a sum of at most n?(g + 1) spectrahedron, then X € K(n) can be
matrix extreme points of K. expressed as matrix convex combo of
(Hartz-Lupini 21) free extreme points of K with sum of

sizes at most n(g + 1). (E-Helton 19)
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Containment of Matrix Convex Sets

15



Free spectrahedral containment

Let A € SMy, (R)& and B € SMy,(R)&. Determining the spectrahedral containment
D (1) C Dp(1) is NP-hard in general . (Ben-Tal, Nemirovski)
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Free spectrahedral containment

Let A € SMy, (R)& and B € SMy,(R)&. Determining the spectrahedral containment
D (1) C Dp(1) is NP-hard in general . (Ben-Tal, Nemirovski)

Determining the optimal constant v such that D4 C vDg is a semidefinite program.

(Helton, Klep, McCullough).

HKM show that D4 C vDp = Dg/, if and only if the map 7 defined by
T(la) =Yg, and 7(Aj) = B; forj=1,...,8.

is completely positive, which happens if and only if 7 is d>-positive.

16



Containment of general matrix convex sets and free polar duals

Let K be a compact matrix convex set. Given X € SM(IR)&, how can one check if X € K?
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Containment of general matrix convex sets and free polar duals

Let K be a compact matrix convex set. Given X € SM(IR)&, how can one check if X € K?

The free polar dual K° of K is

K°:={Y e SM(R)®: Lz()Y) =0forall Ze€ K} =NzcxDz

A quick check now shows

X ek = K° C{X}°=Dx

Thus, if K° is a free spectrahedron, then the containment can be checked via an SDP.
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Minimal and maximal matrix Convex sets

Let C C R8 be convex set and assume that 0 € C. The minimal matrix convex set
generated by C, denoted W™"(C) is the matrix convex hull of C.

The maximal matrix convex W™M#(C) is the set of X € SM(R)# which satisfy all of the
affine linear relations satisfied by C.

In particular, if C is a polyhedron containing 0, then YW™2*(C) is a free spectrahedron.
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Minimal and maximal matrix Convex sets
Let C C R8 be convex set and assume that 0 € C. The minimal matrix convex set

generated by C, denoted W™ "(C) is the matrix convex hull of C.

The maximal matrix convex W™M#(C) is the set of X € SM(R)# which satisfy all of the
affine linear relations satisfied by C.

In particular, if C is a polyhedron containing 0, then YW™2*(C) is a free spectrahedron.
Fact: If K is a matrix convex set with K(1) = C, then W™"(C) Cc K € W™*(C)

Question: how can one determine the optimal v > 1 such that

Wmax( C) c ,YWmin(C)
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Duality of minimal and maximal matrix convex sets

For a compact convex set C C RE, let C’ denote its classical dual. That is

C'={xeRE:(x,y) <1lforall ye C}.
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Duality of minimal and maximal matrix convex sets

For a compact convex set C C RE, let C’ denote its classical dual. That is

C'={xeRE:(x,y) <1lforall ye C}.

Davidson, Dor-on, Shalit, Solel show that, minimal and maximal matrix convex sets are
dual to each other in that

(Wmin(C))o — WmaX(C/)

Furthermore if 0 € C, then .
(WmaX(C))O — Wmln(C/)
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Duality of minimal and maximal matrix convex sets

For a compact convex set C C RE, let C’ denote its classical dual. That is

C'={xeRE:(x,y) <1lforall ye C}.

Davidson, Dor-on, Shalit, Solel show that, minimal and maximal matrix convex sets are
dual to each other in that

(Wmin(C))o — WmaX(C/)

Furthermore if 0 € C, then .
(WmaX(C))O — Wmln(C/)

Thus, the free polar dual of a minimal matrix convex set generated by a polyhedron is in
fact a free spectrahedron.
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Incompatibility of Quantum measurements
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Free spectrahedra vs. incompatibility of quantum measurements

Key feature of quantum mechanics is existence of incompatible observables, e.g., position
and momentum, which are not jointly measurable.

Idea: Quantify incompatibility of measurements (interpreted as POVMs) by determining
the probability that adding noise makes measurements jointly measurable.
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Free spectrahedra vs. incompatibility of quantum measurements

Key feature of quantum mechanics is existence of incompatible observables, e.g., position
and momentum, which are not jointly measurable.

Idea: Quantify incompatibility of measurements (interpreted as POVMs) by determining
the probability that adding noise makes measurements jointly measurable.

(Bluhm, Nechita) This is equivalent to determining the smallest constant  such that
Da(n) € yW™(Da(1))

where D 4 is a Cartesian product of free polyhedron of interest determined by the quantum
system and where n is the dimension of the POVM. (E.g, n = 2 is qubits).

21



Incompatibility vs Matrix extreme points

Since D 4(n) is contained in the matrix convex hull of the matrix extreme points of D4 of
size at most n, one has

Da(n) CyW™"(Da(1))
if and only if '
X CyW™(Da(1))

for all matrix extreme points X € D4 of size at most n.
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Incompatibility vs Matrix extreme points

Since D 4(n) is contained in the matrix convex hull of the matrix extreme points of D4 of
size at most n, one has

Da(n) CyW™"(Da(1))
if and only if .
X CyW™(Da(1))

for all matrix extreme points X € D4 of size at most n.

This is in turn equivalent to
D.A’ C ’)/DX

for all matrix extreme points X € D 4 of size at most n, where D 4 is a free polyhedron
whose first level is the classical dual of D 4(1).
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Matrix Extreme points vs Cartesian products

Proposition [Bluhm-E-Klep-Magron-Nechita]

Let Dy and Dy be bounded free spectrahedra. If X and ) are matrix extreme points of
D4 and Dg, then (X,)) is a matrix extreme points of Do x Dp. However, matrix
extreme points of D4 x Dg need not be pairs of matrix extreme points of D 4 and Dg.

If D4 is assumed to be a free simplex and Dg is the free interval, then (X,Y) is a real
matrix extreme point of (D4 x Dg)(2) if and only if (up to minor details) X and ) are
matrix extreme points of D 4 and Dg, respectively.

Here D 4 is a free simplex if A € SMg11(IR)8 is a tuple of diagonal matrices and D 4 is
bounded.

In the classical setting, pairs of extreme points are extreme points in a Cartesian product.
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The Cartesian product of a free simplex and a line

Theorem [Bluhm-E-Klep-Magron-Nechita]
For D4 x Dp the Cartesian product of a “(real) standard free simplex in k variables” and
the “(real) free interval”, the smallest constant ~yy such that

(Da x D5)(2) C W™ ((Da x Ds)(1))

is given by
2k
Yk =
k—1++vk+1

We conjecture also that D4 x D C W™ (D4 x Dp)(1)).
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Extreme points of a two variable free simplex and a line

When the simplex has two variables, D4 x Dg at level one is the following spectrahedron,

which has extreme points

E={(1,1,1),(1,-2,1),(-2,1,1),(1,1,-1),(1, -2, -1),(-2,1,-1)}. Let £ € SMg(R)3
be the diagonal tuple given by taking a direct sum of elements of E.

Fact: Dg(1) is the classical dual of (D4 x Dp)(1). Thus the optimization in question is
equivalent to finding v s.t.

min s.t. De C YDy
YER

for all matrix extreme points X' of (D4 x Dp)(2). -



A feasibility SDP to find

Let E={(1,1,1),(1,-2,1),(-2,1,1),(1,1,-1),(1,—2,-1),(—2,1,-1)}. Let
£ € SMg(R)3 be the diagonal tuple given by taking a direct sum of elements of E and let
X € (Da xDg)(2). Then Dg C 4Dy if and only if the HKM SDP

CES/\/IQ(]R)6

®°, G >0,

G —-2G+ G+ G —-2G+ G = Xy,
Cit Co—2Cs+ Cat Cs —2Cs = Xo,
CitCot Cs— Co— Cs— Co = Xs,
Ci+ Cot Cot Cot Cs+ Co =,

is feasible.



A feasibility SDP to find

Theorem [Bluhm-E-Klep-Magron-Nechita]

For D 4 the Cartesian product of a standard free simplex in two variables and interval and
v € R, we have (D4 x Dg)(2) C v(co™(D4(1))) if and only if

De C Dxp) for all § € [0, 7/2]

w0-((5 %) 9 E8 9)

Moreover, if vo = 1+4\E' then Dg C 2D x g for all 6 € [0,7/2].

where
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Proof of the theorem for k = 2

Using our classification of the matrix extreme points of (D4 x Dg)(2), we find that up to
unitary equivalence, all matrix extreme points of (D4 x Dg)(2) have one of the forms

- (3 %) )G )
yo=((1 9).(2 9. (@ )
w0=((3 )0 959 %)

where 6 € [0, 7].
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Proof of the theorem for k = 2

By examining the HKM SDP in question, we can show that solutions for extreme points of
the form X(0) give solutions to the remaining forms.

E.g., one can show that (Cy, G, Gz, Ca, Gs, Cg) is a solution for X'(0) if and only if
(Cz, G, G, Gy, Gy, C6) is a solution for y(@)

Arguing similarly allows one to restrict to 6 € [0, 7/2].

From here, we construct and exact feasible point of the HKM SDP.
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Proof of the theorem for k > 3

Classifying extreme points of (D4 x Dg)(2) and examining the form of the HKM SDP
allows a dimension reduction from a k-variable simplex to a scaled 2-variable simplex.
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Proof of the theorem for k > 3

Classifying extreme points of (D4 x Dg)(2) and examining the form of the HKM SDP
allows a dimension reduction from a k-variable simplex to a scaled 2-variable simplex.

This leads to the HKM feasibility SDP

C € SMy(R)®
@2, C =0,

1
Ci— kGo+ G + Gy — kG + Gg = <0 _°k>,

—k
C1+C2—kC3+C4+C5—kC6=<O (1)>,

A e VN

G+GO+G+C+ G+ G =yl
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A feasible point for kK > 3

The following point is feasible. Set a(k) := and set

2k+4\/ﬁ+2
k—1—2cos(f) (k—1)sin(6)
Gl = el ( (k—1)sin() k — 1+ 2cos(f) )

1 + cos(0) (Vk+ 1+ 1)sin(6) >
(Vk+1+1)sin(f) (k+2vVk+1+2)(1— cos(f))
(k+2vk+1+2)(1+cos(d)) (Vk—+1+1)sin(9) )

(Vk+1+1)sin(0) 1 — cos(h)

G(0) = (k)(
(

Ca6) = a(k) ( k—1+2cos(0) —(k—1)sin(6) )
(-
o4

G3(0) = (k)

—(k —1)sin(#) k —1—2cos()

Cs(6) = a(k) 1l — woslft) — (Vk+1+1)sin(0) )
Ay = (Vk+1+1)sin(0) (k+2vVk+1+2)(1+ cos(d))
(k+2vVk+1+2)(1—cos(d)) — (Vk+1+1)sin(6) >

Ce(0) = — (VK +1+1)sin(0) 1+ cos(6)
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Checking the point is feasible

To check the point is feasible, one need only put it into the HKM SDP and verify the
constraints hold, then verify each C;(#) is positive semidefinite by showing its trace and
determinant are nonnegative (which is sufficient since they are 2 x 2).

This solution does not extend to the k = 2 variable case. The issue is that

det(C1(0)) = det(C4a(0)) = a(k)?(k — 3)(k + 1) cos()?

which is negative when k = 2.
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The k = 2 feasible point we constructed

(1 1\[11 (1 B
(G m emal? )

where v and /3 defined on the next slide. Then (Cy, () is a feasible point of the HKM
SDP

Set

Go G =0,

—2C —2G + X3(6) ++1 = 0,
-3G+Xi+Xo+~l =0,

3G — Xi 47/ =0,

G+ G —X/3—X3(0)/2 —~1/6 =0,

The constraints in the HKM SDP allow us to solve for the remaining variables unknowns in terms of G, G,

so this formulation is equivalent
33



The choice of a and 3

In the previous slide

2
T 43+ V33
e G+ G—¢
St 2 1 —G2
b 1= 3 o A= (3
with

(=12 (2 + \/§) sin(0) — 4v/3

G = \f6\/8171 sin(0) + 6m1 sin(26) + 61, cos(6) + 6 (2 < \/§) cos(26) + 181v/3 + 318
(s = —6sin(0) + 12 <2 + \/§) cos(6) + 14v/3 + 21

and
m=124+7vV3 and =54+ 31V3.
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For context as to how much messier this is than the kK > 3 case...

A big challenge ends up being showing that C; + G, — X5/3 — X5(0)/2 —~v1/6 = 0. One
can do this by looking at the trace and determinant. We couldn’t show that this is positive
if one fixes a choice 5 of 5_.

We showed that if h(#) defined below is positive for § € [0, 7/2], then for each 6, either
choosing 54 or S will work.

h(f) = 3 (1659159 + 957244+/3) sin(f) + 24 (108048 + 62413/3) sin(26)
—18 (84547 + 48802+/3) sin(360) — 36 (48096 + 27769/3) sin(46)
—81 (5307 + 3064v/3) sin(56) + 48 (11401 + 6598+/3) cos(#)
+54 (5341 + 3100V/3) cos(20) — 36 (7538 + 4359+/3) cos(36)
—108 (3469 + 2003/3) cos(46) — 324 (362 + 209+/3) cos(50)
+62 (3963 + 2266/3) .
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