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Convex Combinations

Given a set C ⊂ Rg and a finite collection of tuples {xℓ} ⊂ C where xℓ = (xℓ1, x
ℓ
2, . . . , x

ℓ
g )

and coefficients αℓ ≥ 0 a convex combination is a sum of the form

k∑
ℓ=1

αℓx
ℓ ∈ Rg such that

k∑
ℓ=1

αℓ = 1

The convex hull of a set C is the set of all convex combinations of C . Say C is convex if it
is closed under convex combinations.

A point x ∈ C is an extreme point of C if it cannot be expressed as a nontrivial convex
combination of elements of C .
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Convex sets have many nice properties

Theorem [Carathéodory (also see Krein-Milman)]

Let C ⊂ Rg be a closed bounded convex set. Then C is the convex hull of its extreme
points.

Furthermore, every element of C can be expressed as a convex combination of at most
g + 1 extreme points of C .
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Linear matrix inequalities give convex sets

A (monic) linear pencil is a matrix valued function LA of the form

LA(x) := Id −
g∑

j=1

Ajxj = Id − ΛA(x),

where A = (A1, . . . ,Ag ) with each Aj symmetric d × d and x = (x1, . . . , xg ) ∈ Rg

A Linear Matrix Inequality (LMI) is one of the form:

LA(x) ⪰ 0, i .e., LA(x) is positive semidefinite.

The set of solutions x above is a convex set called a spectrahedron. Spectrahedra are the
feasibility domains of convex optimization problems called semidefinite programs (SDP).
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Spectrahedron example

Take A1 =

(
1 0
0 −1

)
and A2 =

(
0 1
1 0

)
. Then

LA(x) = I2 −
(
1 0
0 −1

)
x1 −

(
0 1
1 0

)
x2 =

(
1− x1 −x2
−x2 1 + x1

)

Observe LA(x) ⪰ 0 IFF det(LA(x)) = 1− x21 − x22 ≥ 0. So LA(x) defines circle in R2.
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Dimension free sets

Let SMn(R)g denote g -tuples of real symmetric n × n matrices. I.e. if X ∈ SMn(R)g then

X = (X1,X2, . . . ,Xg )

where each Xi is a symmetric n × n matrix.

Define SM(R)g = ∪∞
n=1SMn(R)g . A subset of SM(R)g is a dimension free set.

Our goal: Study solution sets of linear matrix inequalities over SM(R)g .
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Free Linear matrix inequalities

A free (monic) linear pencil is a matrix valued function LA of the form

LA(X ) := Idn −
g∑

j=1

Aj ⊗ Xj = Idn − ΛA(X ),

where A ∈ SMd(R)g and X ∈ SMn(R)g . Here ⊗ denotes the Kronecker Product. E.g.

(
2 3
3 4

)
⊗
(
4 5
5 2

)
=

2

(
4 5
5 2

)
3

(
4 5
5 2

)
3

(
4 5
5 2

)
4

(
4 5
5 2

)


A Free Linear Matrix Inequality (LMI) is one of the form:

LA(X ) ⪰ 0.
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Free spectrahedra

For each fixed n the solution set

DA(n) = {X ∈ SMn(R)g : LA(X ) = Idn −
g∑

j=1

Aj ⊗ Xj ⪰ 0}

is called a free spectrahedron at level n.

The set DA = ∪nDA(n) ⊂ ∪nSMn(R)g is called a free spectrahedron.

If A a tuple of simultaneously diagonalizable matrices, then DA is called free polyhedron.
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Matrix Convex Combinations

Given a finite collection of tuples {X ℓ} ⊂ SM(R)g where X ℓ = (Xℓ
1, . . . ,X

ℓ
g ) ∈ SMnℓ(R)g ,

a matrix convex combination is a sum of the form

k∑
ℓ=1

VT
ℓ X ℓVℓ ∈ SMn(R)g such that

k∑
ℓ=1

VT
ℓ Vℓ = In

Here the Vℓ are nℓ × n matrices which serve as convex coefficients, and

VT
ℓ X ℓVℓ = (VT

ℓ X
ℓ
1Vℓ, . . . ,V

T
ℓ X

ℓ
gVℓ).

For K ⊂ SM(R)g let comat(K ) denote the set of matrix convex combinations of K . Say K
is matrix convex if it is closed under matrix convex combinations, i.e., if K = comat(K ).

Say K is bounded if there exists a M ≥ 0 such that MI−
∑g

i=1X
2
i ⪰ 0 for all

X = (X1, . . . ,Xg ) ∈ K .
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Matrix convex combinations allow for convex combinations of tuples of different sizes

For example, if X 1 ∈ SMn1(R)g and X 2 ∈ SMn2(R)g and

VT
1 = (In1 0n1×n2) and VT

2 = (0n2×n1 In2),

then

VT
1 X 1V1 + VT

2 X 2V2 = X 1 ⊕X 2 =

(
X 1 0
0 X 2

)
and VT

1 V1 + VT
2 V2 = In1+n2 .

On the other hand, if X ∈ SMn(R)g , and V ∈ Rn×m and VTV = Im, then

VTXV ∈ SMm(R)g

is a matrix convex combination of X .
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Matrix convex combinations vs dilations

Given a finite collection of tuples {X ℓ}kℓ=1 ⊂ SM(R)g and matrices Vℓ ∈ Mnℓ×n(R) such
that VT

ℓ Vℓ = In, define

X = ⊕k
ℓ=1X ℓ and VT = (VT

1 . . . VT
k ).

Then
k∑

ℓ=1

VT
ℓ X ℓVℓ = VTXV and VTV = I.
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Sets defined by Free LMI are matrix convex

Free spectrahedra are matrix convex.

Theorem [Helton-McCullough 12]

Let p be a noncommutative polynomial and let Dp be the component containing 0 of
{X ∈ SM(R)g |p(X ) ⪰ 0}. If Dp is matrix convex, then Dp is a free spectrahedron.

Question: What is the right notion of extreme point for matrix convex sets (and in
particular for free spectrahedra)?
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Extreme points of matrix convex sets

Say X is a matrix extreme point of K ⊂ SM(R)g if X cannot be expressed as a nontrivial
matrix convex combination of elements of K which have size less than or equal to X .

Say X is a free (absolute) extreme point of K ⊂ SM(R)g if X cannot be expressed as a
nontrivial matrix convex combination of any elements of K .
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Matrix extreme vs free extreme

Let K ⊂ SM(R)g be a (level-wise) closed bounded matrix convex set

Matrix extreme points

1. Always span K through matrix convex
combinations. (Webster-Winkler 99)

2. Not necessarily a minimal spanning set.

3. Carathéodory bound: X ∈ K (n) can be
expressed as a sum of at most n2(g + 1)
matrix extreme points of K .
(Hartz-Lupini 21)

Free extreme points

1. Can fail to exist. (E 18, Passer 22)

2. Necessarily a minimal spanning set if
they span.

3. Carathéodory bound: If K is a free
spectrahedron, then X ∈ K (n) can be
expressed as matrix convex combo of
free extreme points of K with sum of
sizes at most n(g + 1). (E-Helton 19)
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Containment of Matrix Convex Sets
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Free spectrahedral containment

Let A ∈ SMd1(R)g and B ∈ SMd2(R)g . Determining the spectrahedral containment
DA(1) ⊂ DB(1) is NP-hard in general . (Ben-Tal, Nemirovski)

Determining the optimal constant γ such that DA ⊂ γDB is a semidefinite program.
(Helton, Klep, McCullough).

HKM show that DA ⊂ γDB = DB/γ if and only if the map τ defined by

τ(Id1) = γId2 and τ(Aj) = Bj for j = 1, . . . , g .

is completely positive, which happens if and only if τ is d2-positive.
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Containment of general matrix convex sets and free polar duals

Let K be a compact matrix convex set. Given X ∈ SM(R)g , how can one check if X ∈ K?

The free polar dual K ◦ of K is

K ◦ := {Y ∈ SM(R)g : LZ(Y) ⪰ 0 for all Z ∈ K} = ∩Z∈KDZ

A quick check now shows

X ∈ K ⇐⇒ K ◦ ⊆ {X}◦ = DX

Thus, if K ◦ is a free spectrahedron, then the containment can be checked via an SDP.
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Minimal and maximal matrix Convex sets

Let C ⊂ Rg be convex set and assume that 0 ∈ C . The minimal matrix convex set
generated by C , denoted Wmin(C ) is the matrix convex hull of C .

The maximal matrix convex Wmax(C ) is the set of X ∈ SM(R)g which satisfy all of the
affine linear relations satisfied by C .

In particular, if C is a polyhedron containing 0, then Wmax(C ) is a free spectrahedron.

Fact: If K is a matrix convex set with K (1) = C , then Wmin(C ) ⊂ K ⊂ Wmax(C )

Question: how can one determine the optimal γ ≥ 1 such that

Wmax(C ) ⊂ γWmin(C )
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Duality of minimal and maximal matrix convex sets

For a compact convex set C ⊂ Rg , let C ′ denote its classical dual. That is

C ′ = {x ∈ Rg : ⟨x , y⟩ ≤ 1 for all y ∈ C}.

Davidson, Dor-on, Shalit, Solel show that, minimal and maximal matrix convex sets are
dual to each other in that

(Wmin(C ))◦ = Wmax(C ′)

Furthermore if 0 ∈ C , then
(Wmax(C ))◦ = Wmin(C ′)

Thus, the free polar dual of a minimal matrix convex set generated by a polyhedron is in
fact a free spectrahedron.
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Incompatibility of Quantum measurements
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Free spectrahedra vs. incompatibility of quantum measurements

Key feature of quantum mechanics is existence of incompatible observables, e.g., position
and momentum, which are not jointly measurable.

Idea: Quantify incompatibility of measurements (interpreted as POVMs) by determining
the probability that adding noise makes measurements jointly measurable.

(Bluhm, Nechita) This is equivalent to determining the smallest constant γ such that

DA(n) ⊂ γWmin(DA(1))

where DA is a Cartesian product of free polyhedron of interest determined by the quantum
system and where n is the dimension of the POVM. (E.g, n = 2 is qubits).
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Incompatibility vs Matrix extreme points

Since DA(n) is contained in the matrix convex hull of the matrix extreme points of DA of
size at most n, one has

DA(n) ⊂ γWmin(DA(1))

if and only if
X ⊂ γWmin(DA(1))

for all matrix extreme points X ∈ DA of size at most n.

This is in turn equivalent to
DA′ ⊂ γDX

for all matrix extreme points X ∈ DA of size at most n, where DA′ is a free polyhedron
whose first level is the classical dual of DA(1).
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Matrix Extreme points vs Cartesian products

Proposition [Bluhm-E-Klep-Magron-Nechita]

Let DA and DB be bounded free spectrahedra. If X and Y are matrix extreme points of
DA and DB, then (X ,Y) is a matrix extreme points of DA ×DB. However, matrix
extreme points of DA ×DB need not be pairs of matrix extreme points of DA and DB.

If DA is assumed to be a free simplex and DB is the free interval, then (X ,Y) is a real
matrix extreme point of (DA ×DB)(2) if and only if (up to minor details) X and Y are
matrix extreme points of DA and DB, respectively.

Here DA is a free simplex if A ∈ SMg+1(R)g is a tuple of diagonal matrices and DA is
bounded.

In the classical setting, pairs of extreme points are extreme points in a Cartesian product.
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The Cartesian product of a free simplex and a line

Theorem [Bluhm-E-Klep-Magron-Nechita]

For DA ×DB the Cartesian product of a “(real) standard free simplex in k variables” and
the “(real) free interval”, the smallest constant γk such that

(DA ×DB)(2) ⊂ γkWmin((DA ×DB)(1))

is given by

γk =
2k

k − 1 +
√
k + 1

We conjecture also that DA ×DB ⊂ γkWmin((DA ×DB)(1)).
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Extreme points of a two variable free simplex and a line

When the simplex has two variables, DA ×DB at level one is the following spectrahedron,

which has extreme points
E = {(1, 1, 1), (1,−2, 1), (−2, 1, 1), (1, 1,−1), (1,−2,−1), (−2, 1,−1)}. Let E ∈ SM6(R)3
be the diagonal tuple given by taking a direct sum of elements of E .

Fact: DE(1) is the classical dual of (DA ×DB)(1). Thus the optimization in question is
equivalent to finding γ s.t.

min
γ∈R

s.t. DE ⊂ γDX

for all matrix extreme points X of (DA ×DB)(2). 25



A feasibility SDP to find γ

Let E = {(1, 1, 1), (1,−2, 1), (−2, 1, 1), (1, 1,−1), (1,−2,−1), (−2, 1,−1)}. Let
E ∈ SM6(R)3 be the diagonal tuple given by taking a direct sum of elements of E and let
X ∈ (DA ×DB)(2). Then DE ⊂ γDX if and only if the HKM SDP

C ∈ SM2(R)6

⊕6
i=1 Ci ⪰ 0,

C1 − 2C2 + C3 + C4 − 2C5 + C6 = X1,

C1 + C2 − 2C3 + C4 + C5 − 2C6 = X2,

C1 + C2 + C3 − C4 − C5 − C6 = X3,

C1 + C2 + C3 + C4 + C5 + C6 = γI ,

is feasible.
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A feasibility SDP to find γ

Theorem [Bluhm-E-Klep-Magron-Nechita]

For DA the Cartesian product of a standard free simplex in two variables and interval and
γ ∈ R, we have (DA ×DB)(2) ⊂ γ

(
comat(DA(1))

)
if and only if

DE ⊂ DX (θ) for all θ ∈ [0, π/2]

where

X (θ) =

((
1 0
0 −2

)
,

(
−2 0
0 1

)
,

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

))

Moreover, if γ2 =
4

1+
√
3
, then DE ⊂ γ2DX (θ) for all θ ∈ [0, π/2].
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Proof of the theorem for k = 2

Using our classification of the matrix extreme points of (DA ×DB)(2), we find that up to
unitary equivalence, all matrix extreme points of (DA ×DB)(2) have one of the forms

X (θ) =

((
1 0
0 −2

)
,

(
−2 0
0 1

)
,

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

))
Y(θ) =

((
1 0
0 1

)
,

(
−2 0
0 1

)
,

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

))
Z(θ) =

((
1 0
0 −2

)
,

(
1 0
0 1

)
,

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

))
where θ ∈ [0, π].
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Proof of the theorem for k = 2

By examining the HKM SDP in question, we can show that solutions for extreme points of
the form X (θ) give solutions to the remaining forms.

E.g., one can show that (C1,C2,C3,C4,C5,C6) is a solution for X (θ) if and only if
(C2,C1,C3,C5,C4,C6) is a solution for Y(θ).

Arguing similarly allows one to restrict to θ ∈ [0, π/2].

From here, we construct and exact feasible point of the HKM SDP.
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Proof of the theorem for k ≥ 3

Classifying extreme points of (DA ×DB)(2) and examining the form of the HKM SDP
allows a dimension reduction from a k-variable simplex to a scaled 2-variable simplex.

This leads to the HKM feasibility SDP

C ∈ SM2(R)6

⊕6
i=1 Ci ⪰ 0,

C1 − kC2 + C3 + C4 − kC5 + C6 =

(
1 0
0 −k

)
,

C1 + C2 − kC3 + C4 + C5 − kC6 =

(
−k 0
0 1

)
,

C1 + C2 + C3 − C4 − C5 − C6 =

(
cos(θ) sin(θ)
sin(θ) −cos(θ)

)
,

C1 + C2 + C3 + C4 + C5 + C6 = γk I ,

30



Proof of the theorem for k ≥ 3

Classifying extreme points of (DA ×DB)(2) and examining the form of the HKM SDP
allows a dimension reduction from a k-variable simplex to a scaled 2-variable simplex.

This leads to the HKM feasibility SDP

C ∈ SM2(R)6

⊕6
i=1 Ci ⪰ 0,

C1 − kC2 + C3 + C4 − kC5 + C6 =

(
1 0
0 −k

)
,

C1 + C2 − kC3 + C4 + C5 − kC6 =

(
−k 0
0 1

)
,

C1 + C2 + C3 − C4 − C5 − C6 =

(
cos(θ) sin(θ)
sin(θ) −cos(θ)

)
,

C1 + C2 + C3 + C4 + C5 + C6 = γk I ,

30



A feasible point for k ≥ 3

The following point is feasible. Set α(k) := 1
2k+4

√
k+1+2

and set

C1(θ) = α(k)

(
k − 1− 2 cos(θ) (k − 1) sin(θ)
(k − 1) sin(θ) k − 1 + 2 cos(θ)

)
C2(θ) = α(k)

(
1 + cos(θ)

(√
k + 1 + 1

)
sin(θ)(√

k + 1 + 1
)
sin(θ)

(
k + 2

√
k + 1 + 2

)
(1− cos(θ))

)
C3(θ) = α(k)

( (
k + 2

√
k + 1 + 2

)
(1 + cos(θ))

(√
k + 1 + 1

)
sin(θ)(√

k + 1 + 1
)
sin(θ) 1− cos(θ)

)
C4(θ) = α(k)

(
k − 1 + 2 cos(θ) −(k − 1) sin(θ)
−(k − 1) sin(θ) k − 1− 2 cos(θ)

)
C5(θ) = α(k)

(
1− cos(θ) −

(√
k + 1 + 1

)
sin(θ)

−
(√

k + 1 + 1
)
sin(θ)

(
k + 2

√
k + 1 + 2

)
(1 + cos(θ))

)
C6(θ) = α(k)

( (
k + 2

√
k + 1 + 2

)
(1− cos(θ)) −

(√
k + 1 + 1

)
sin(θ)

−
(√

k + 1 + 1
)
sin(θ) 1 + cos(θ)

)
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Checking the point is feasible

To check the point is feasible, one need only put it into the HKM SDP and verify the
constraints hold, then verify each Cj(θ) is positive semidefinite by showing its trace and
determinant are nonnegative (which is sufficient since they are 2× 2).

This solution does not extend to the k = 2 variable case. The issue is that

det(C1(θ)) = det(C4(θ)) = α(k)2(k − 3)(k + 1) cos(θ)2

which is negative when k = 2.
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The k = 2 feasible point we constructed

Set

C1 =

(
1√
3
− 1

2

)(
1 1
1 1

)
and C2 = α

(
1 β
β β2

)
where α and β defined on the next slide. Then (C1,C2) is a feasible point of the HKM
SDP

C1 ⊕ C2 ⪰ 0,

−2C1 − 2C2 + X3(θ) + γI ⪰ 0,

−3C1 + X1 + X2 + γI ⪰ 0,

−3C2 − X1 + γI ⪰ 0,

C1 + C2 − X2/3− X3(θ)/2− γI/6 ⪰ 0,

The constraints in the HKM SDP allow us to solve for the remaining variables unknowns in terms of C1,C2,
so this formulation is equivalent
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The choice of α and β

In the previous slide

α =
2

6 + 4
√
3 +

√
3β2

,

and

β+ :=
ζ1 + ζ2

ζ3
or β− :=

ζ1 − ζ2
ζ3

with

ζ1 = 12
(
2 +

√
3
)
sin(θ)− 4

√
3

ζ2 =
√
6

√
8η1 sin(θ) + 6η1 sin(2θ) + 6η2 cos(θ) + 6

(
2 +

√
3
)
cos(2θ) + 181

√
3 + 318

ζ3 = −6 sin(θ) + 12
(
2 +

√
3
)
cos(θ) + 14

√
3 + 21

and
η1 = 12 + 7

√
3 and η2 = 54 + 31

√
3.
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For context as to how much messier this is than the k ≥ 3 case...

A big challenge ends up being showing that C1 + C2 − X2/3− X3(θ)/2− γI/6 ⪰ 0. One
can do this by looking at the trace and determinant. We couldn’t show that this is positive
if one fixes a choice β+ of β−.

We showed that if h(θ) defined below is positive for θ ∈ [0, π/2], then for each θ, either
choosing β+ or β− will work.

h(θ) = 3
(
1659159 + 957244

√
3
)
sin(θ) + 24

(
108048 + 62413

√
3
)
sin(2θ)

−18
(
84547 + 48802

√
3
)
sin(3θ)− 36

(
48096 + 27769

√
3
)
sin(4θ)

−81
(
5307 + 3064

√
3
)
sin(5θ) + 48

(
11401 + 6598

√
3
)
cos(θ)

+54
(
5341 + 3100

√
3
)
cos(2θ)− 36

(
7538 + 4359

√
3
)
cos(3θ)

−108
(
3469 + 2003

√
3
)
cos(4θ)− 324

(
362 + 209

√
3
)
cos(5θ)

+62
(
3963 + 2266

√
3
)
.
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