

Real vs complex free spectrahedra: The evils of the reals and the crimes of the complexes

Eric Evert with Benjamin Passer

IWOTA, July 2025

Convex Combinations

Given a set $C \subset \mathbb{R}^g$ and a finite collection of tuples $\{x^\ell\} \subset C$ where $x^\ell = (x_1^\ell, x_2^\ell, \dots, x_g^\ell)$ and coefficients $\alpha_\ell \geq 0$ a **convex combination** is a sum of the form

$$\sum_{\ell=1}^k \alpha_\ell x^\ell \in \mathbb{R}^g \quad \text{such that} \quad \sum_{\ell=1}^k \alpha_\ell = 1$$

The **convex hull** of a set C is the set of all convex combinations of C . Say C is **convex** if it is closed under convex combinations.

A point $x \in C$ is an **extreme point** of C if it cannot be expressed as a nontrivial convex combination of elements of C .

Convex sets have many nice properties

Theorem [Carathéodory (also see Krein-Milman)]

Let $C \subset \mathbb{R}^g$ be a closed bounded convex set. Then C is the convex hull of its extreme points.

Furthermore, every element of C can be expressed as a convex combination of at most $g + 1$ extreme points of C .

Linear matrix inequalities give convex sets

A (monic) linear pencil is a matrix valued function $L_{\mathcal{A}}$ of the form

$$L_{\mathcal{A}}(x) := \mathbf{I}_d - \sum_{j=1}^g \mathbf{A}_j x_j = I_d - \Lambda_{\mathcal{A}}(x),$$

where $\mathcal{A} = (\mathbf{A}_1, \dots, \mathbf{A}_g)$ with each \mathbf{A}_j symmetric $d \times d$ and $x = (x_1, \dots, x_g) \in \mathbb{R}^g$

A Linear Matrix Inequality (LMI) is one of the form:

$$L_{\mathcal{A}}(x) \succeq 0, \quad \text{i.e.,} \quad L_{\mathcal{A}}(x) \text{ is positive semidefinite.}$$

The set of solutions x above is a convex set called a spectrahedron. Spectrahedra are the feasibility domains of convex optimization problems called semidefinite programs (SDP).

Spectrahedron example

Take $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then

$$L_{\mathcal{A}}(x) = \mathbf{I}_2 - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x_1 - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} x_2 = \begin{pmatrix} 1 - x_1 & -x_2 \\ -x_2 & 1 + x_1 \end{pmatrix}$$

Observe $L_{\mathcal{A}}(x) \succeq 0$ IFF $\det(L_{\mathcal{A}}(x)) = 1 - x_1^2 - x_2^2 \geq 0$. So $L_{\mathcal{A}}(x)$ defines circle in \mathbb{R}^2 .

Dimension free sets

Let $SM_n(\mathbb{F})^g$ denote g -tuples of self-adjoint $n \times n$ matrices over \mathbb{F} . I.e. if $\mathcal{X} \in SM_n(\mathbb{F})^g$ then

$$\mathcal{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_g)$$

where each \mathbf{X}_i is a self-adjoint $n \times n$ matrix.

Dimension free sets

Let $SM_n(\mathbb{F})^g$ denote g -tuples of self-adjoint $n \times n$ matrices over \mathbb{F} . I.e. if $\mathcal{X} \in SM_n(\mathbb{F})^g$ then

$$\mathcal{X} = (\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_g)$$

where each \mathbf{X}_i is a self-adjoint $n \times n$ matrix.

Our goal: Study solution sets of linear matrix inequalities over $SM(\mathbb{F})^g$.

We will see $\mathbb{F} = \mathbb{R}$ vs $\mathbb{F} = \mathbb{C}$ can make a big difference.

Free Linear matrix inequalities

A **free (monic) linear pencil** is a matrix valued function $L_{\mathcal{A}}$ of the form

$$L_{\mathcal{A}}(\mathcal{X}) := \mathbf{I}_{dn} - \sum_{j=1}^g \mathbf{A}_j \otimes \mathbf{X}_j = \mathbf{I}_{dn} - \Lambda_{\mathcal{A}}(\mathcal{X}),$$

where $\mathcal{A} \in SM_d(\mathbb{F})^g$ and $\mathcal{X} \in SM_n(\mathbb{F})^g$. Here \otimes denotes the Kronecker Product. E.g.

$$\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix} \otimes \begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} 2 \begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix} & 3 \begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix} \\ 3 \begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix} & 4 \begin{pmatrix} 4 & 5 \\ 5 & 2 \end{pmatrix} \end{pmatrix}$$

A **Free Linear Matrix Inequality (LMI)** is one of the form:

$$L_{\mathcal{A}}(\mathcal{X}) \succeq 0.$$

Free spectrahedra

For each fixed n the solution set

$$\mathcal{D}_{\mathcal{A}}(n) = \{\mathcal{X} \in SM_n(\mathbb{R})^g : L_{\mathcal{A}}(\mathcal{X}) = \mathbf{I}_{dn} - \sum_{j=1}^g \mathbf{A}_j \otimes \mathbf{X}_j \succeq 0\}$$

is called a **free spectrahedron at level n** .

The set $\mathcal{D}_{\mathcal{A}} = \bigcup_n \mathcal{D}_{\mathcal{A}}(n) \subset \bigcup_n SM_n(\mathbb{R})^g$ is called a **free spectrahedron**.

If \mathcal{A} a tuple of simultaneously diagonalizable matrices, then $\mathcal{D}_{\mathcal{A}}$ is called free polyhedron.

Matrix Convex Combinations

Given a finite collection of tuples $\{\mathcal{X}^\ell\} \subset SM(\mathbb{F})^g$ where $\mathcal{X}^\ell = (\mathbf{X}_1^\ell, \dots, \mathbf{X}_g^\ell) \in SM_{n_\ell}(\mathbb{F})^g$, a **matrix convex combination** is a sum of the form

$$\sum_{\ell=1}^k \mathbf{V}_\ell^* \mathcal{X}^\ell \mathbf{V}_\ell \in SM_n(\mathbb{R})^g \quad \text{such that} \quad \sum_{\ell=1}^k \mathbf{V}_\ell^* \mathbf{V}_\ell = \mathbf{I}_n$$

Here the \mathbf{V}_ℓ are $n_\ell \times n$ matrices which serve as convex coefficients, and

$$\mathbf{V}_\ell^* \mathcal{X}^\ell \mathbf{V}_\ell = (\mathbf{V}_\ell^* \mathbf{X}_1^\ell \mathbf{V}_\ell, \dots, \mathbf{V}_\ell^* \mathbf{X}_g^\ell \mathbf{V}_\ell).$$

Matrix Convex Combinations

Given a finite collection of tuples $\{\mathcal{X}^\ell\} \subset SM(\mathbb{F})^g$ where $\mathcal{X}^\ell = (\mathbf{X}_1^\ell, \dots, \mathbf{X}_g^\ell) \in SM_{n_\ell}(\mathbb{F})^g$, a **matrix convex combination** is a sum of the form

$$\sum_{\ell=1}^k \mathbf{V}_\ell^* \mathcal{X}^\ell \mathbf{V}_\ell \in SM_n(\mathbb{R})^g \quad \text{such that} \quad \sum_{\ell=1}^k \mathbf{V}_\ell^* \mathbf{V}_\ell = \mathbf{I}_n$$

Here the \mathbf{V}_ℓ are $n_\ell \times n$ matrices which serve as convex coefficients, and

$$\mathbf{V}_\ell^* \mathcal{X}^\ell \mathbf{V}_\ell = (\mathbf{V}_\ell^* \mathbf{X}_1^\ell \mathbf{V}_\ell, \dots, \mathbf{V}_\ell^* \mathbf{X}_g^\ell \mathbf{V}_\ell).$$

For $K \subset SM(\mathbb{F})^g$ let $\text{co}^{\text{mat}}(K)$ denote the set of matrix convex combinations of K . Say K is **matrix convex** if it is closed under matrix convex combinations, i.e., if $K = \text{co}^{\text{mat}}(K)$.

Say K is **bounded** if there exists a $M \geq 0$ such that $M\mathbf{I} - \sum_{i=1}^g \mathbf{X}_i^2 \succeq 0$ for all $\mathcal{X} = (\mathbf{X}_1, \dots, \mathbf{X}_g) \in K$.

Matrix convex combinations allow for convex combinations of tuples of different sizes

For example, if $\mathcal{X}^1 \in SM_{n_1}(\mathbb{F})^g$ and $\mathcal{X}^2 \in SM_{n_2}(\mathbb{F})^g$ and

$$\mathbf{V}_1^* = (\mathbf{I}_{n_1} \quad \mathbf{0}_{n_1 \times n_2}) \quad \text{and} \quad \mathbf{V}_2^* = (\mathbf{0}_{n_2 \times n_1} \quad \mathbf{I}_{n_2}),$$

then

$$\mathbf{V}_1^* \mathcal{X}^1 \mathbf{V}_1 + \mathbf{V}_2^* \mathcal{X}^2 \mathbf{V}_2 = \mathcal{X}^1 \oplus \mathcal{X}^2 = \begin{pmatrix} \mathcal{X}^1 & 0 \\ 0 & \mathcal{X}^2 \end{pmatrix} \quad \text{and} \quad \mathbf{V}_1^* \mathbf{V}_1 + \mathbf{V}_2^* \mathbf{V}_2 = \mathbf{I}_{n_1+n_2}.$$

Matrix convex combinations allow for convex combinations of tuples of different sizes

For example, if $\mathcal{X}^1 \in SM_{n_1}(\mathbb{F})^g$ and $\mathcal{X}^2 \in SM_{n_2}(\mathbb{F})^g$ and

$$\mathbf{V}_1^* = (\mathbf{I}_{n_1} \quad \mathbf{0}_{n_1 \times n_2}) \quad \text{and} \quad \mathbf{V}_2^* = (\mathbf{0}_{n_2 \times n_1} \quad \mathbf{I}_{n_2}),$$

then

$$\mathbf{V}_1^* \mathcal{X}^1 \mathbf{V}_1 + \mathbf{V}_2^* \mathcal{X}^2 \mathbf{V}_2 = \mathcal{X}^1 \oplus \mathcal{X}^2 = \begin{pmatrix} \mathcal{X}^1 & 0 \\ 0 & \mathcal{X}^2 \end{pmatrix} \quad \text{and} \quad \mathbf{V}_1^* \mathbf{V}_1 + \mathbf{V}_2^* \mathbf{V}_2 = \mathbf{I}_{n_1+n_2}.$$

On the other hand, if $\mathcal{X} \in SM_n(\mathbb{R})^g$, and $\mathbf{V} \in \mathbb{F}^{n \times m}$ and $\mathbf{V}^* \mathbf{V} = \mathbf{I}_m$, then

$$\mathbf{V}^* \mathcal{X} \mathbf{V} \in SM_m(\mathbb{R})^g$$

is a matrix convex combination of \mathcal{X} .

Extreme points of matrix convex sets

Say \mathcal{X} is a **free (absolute) extreme point** of $K \subset SM(\mathbb{F})^g$ if \mathcal{X} cannot be expressed as a nontrivial matrix convex combination of **any** elements of K .

If $E \subset K$ and $\text{co}^{\text{mat}}(E) = K$, then E must contain the free extreme points of K (up to unitary equivalence).

If $\mathcal{D}_{\mathcal{A}} \subset SM(\mathbb{R})^g$ is a real free spectrahedron, the the classical extreme points of $\mathcal{D}_{\mathcal{A}}(1)$ are free extreme points of $\mathcal{D}_{\mathcal{A}}$. The same is not true over \mathbb{C}

Theorem [E-Helton 19]

Let $\mathcal{D}_A \subset SM(\mathbb{R})^g$ be a bounded real free spectrahedron and let $\mathcal{X} \in \mathcal{D}_A(n)$. Then \mathcal{X} is a free convex combination of free extreme points of \mathcal{D}_A whose sum of sizes is at most $n(g + 1)$.

Free extreme points vs Free spectrahedra. The crimes of the complexes

Theorem [E-Helton 19]

Let $\mathcal{D}_A \subset SM(\mathbb{R})^g$ be a bounded real free spectrahedron and let $\mathcal{X} \in \mathcal{D}_A(n)$. Then \mathcal{X} is a free convex combination of free extreme points of \mathcal{D}_A whose sum of sizes is at most $n(g + 1)$.

Theorem [Passer 22]

There exist closed bounded complex free spectrahedra that have no free extreme points.

Complex conjugation closed as the solution?

Theorem [E-Helton 19]

Let $\mathcal{D}_A \subset SM(\mathbb{C})^g$ be a bounded complex free spectrahedron and let $\mathcal{X} \in \mathcal{D}_A(n)$. Additionally assume \mathcal{D}_A is closed under complex conjugation. Then \mathcal{X} is a free convex combination of free extreme points of \mathcal{D}_A whose sum of sizes is at most $2n(g + 1)$.

Complex conjugation closed is equivalent to assuming there exists a real matrix tuple \mathcal{B} so that $\mathcal{D}_A = \mathcal{D}_{\mathcal{B}}$.

Complex conjugation closed is not necessary for free extreme to span a complex free spectrahedron.

Free spectrahedrops, polar duals, and real problems

Free spectrahedrops a.k.a free spectrahedra shadows

Let $\mathcal{A} \in SM_d(\mathbb{R})^g$ and fix $h < g$. The **free spectrahedrop** $\text{proj}_h \mathcal{D}_{\mathcal{A}}$ is the coordinate projection of the free spectrahedron $\mathcal{D}_{\mathcal{A}}$ onto its first h variables.

That is

$$\text{proj}_h \mathcal{D}_{\mathcal{A}} := \{ \mathcal{X} \in SM(\mathbb{R})^h : \exists \mathcal{Y} \text{ s.t. } L_{\mathcal{A}}(\mathcal{X}, \mathcal{Y}) \succeq 0 \}.$$

Question: Is a closed bounded free spectrahedrop that is closed under complex conjugation the matrix convex hull of its free extreme points. We will prove: NO!

Free polar duals and free spectrahedrops

The (classical) polar dual C^\bullet of a convex set C is

$$C^\bullet = \{y \in \mathbb{R}^g : 0 \leq 1 - \langle x, y \rangle = L_y(x) \text{ for all } x \in C\} = \cap_{x \in C} \mathcal{D}_x(1)$$

The free polar dual K° of a matrix convex set $K \subset SM(\mathbb{F})^g$ is

$$K^\circ := \{\mathcal{Y} \in SM(\mathbb{F})^g : L_{\mathcal{X}}(\mathcal{Y}) \succeq 0 \text{ for all } \mathcal{X} \in K\} = \cap_{\mathcal{X} \in K} \mathcal{D}_{\mathcal{X}}$$

Free polar duals and free spectrahedrops

The (classical) polar dual C^\bullet of a convex set C is

$$C^\bullet = \{y \in \mathbb{R}^g : 0 \leq 1 - \langle x, y \rangle = L_y(x) \text{ for all } x \in C\} = \cap_{x \in C} \mathcal{D}_x(1)$$

The free polar dual K° of a matrix convex set $K \subset SM(\mathbb{F})^g$ is

$$K^\circ := \{\mathcal{Y} \in SM(\mathbb{F})^g : L_{\mathcal{X}}(\mathcal{Y}) \succeq 0 \text{ for all } \mathcal{X} \in K\} = \cap_{\mathcal{X} \in K} \mathcal{D}_{\mathcal{X}}$$

Theorem [Helton-Klep-McCullough 17]

Let \mathcal{D}_A be a closed bounded free spectrahedron. Then $\mathcal{D}_A^\circ = \text{co}^{\text{mat}}(A)$. Moreover, \mathcal{D}_A° is the projection of a closed bounded free spectrahedron. Furthermore, a spectrahedron representation can be computed algorithmically.

Spectrahedrop example

Recall that if $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $\mathcal{D}_{\mathcal{A}}(1) = \overline{\mathbb{D}}$.

In fact, one can show $\mathcal{D}_{\mathcal{A}} = \text{co}^{\text{mat}}(\mathcal{D}_{\mathcal{A}}(1))$, thus $\mathcal{D}_{\mathcal{A}}$ is the **minimal matrix convex set** whose first level is $\overline{\mathbb{D}}$.

As a consequence, its free polar dual $\mathcal{D}_{\mathcal{A}}^{\circ} = \text{co}^{\text{mat}} \mathcal{A}$ is the **maximal matrix convex set** whose first level is $\overline{\mathbb{D}}$. Furthermore, by HKM, $\text{co}^{\text{mat}} \mathcal{A}$ is a free spectrahedrop.

Spectrahedron example

Using HKM, one computes that if $\mathbf{P}_1 = \mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{P}_2 = \mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{P}_3 = \mathbf{A}_3 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, then $\mathcal{D}_{\mathcal{A}} = \text{proj}_2 \mathcal{D}_{\mathcal{P}}$.

Spectrahedrop example

Using HKM, one computes that if $\mathbf{P}_1 = \mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{P}_2 = \mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{P}_3 = \mathbf{A}_3 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, then $\mathcal{D}_{\mathcal{A}} = \text{proj}_2 \mathcal{D}_{\mathcal{P}}$.

One can verify this by checking that

$$L_{\mathcal{P}}(\mathcal{P}) \succeq 0 \quad \text{thus} \quad \mathcal{A} \in \text{proj}_2 \mathcal{D}_{\mathcal{P}} \quad \text{and} \quad \text{co}^{\text{mat}}(\mathcal{A}) \in \text{proj}_2 \mathcal{D}_{\mathcal{P}}.$$

Additionally, $\text{proj}_2 \mathcal{D}_{\mathcal{P}}(1) = \overline{\mathbb{D}}$, so maximality of $\text{co}^{\text{mat}}(\mathcal{A})$ gives

$$\text{proj}_2 \mathcal{D}_{\mathcal{P}} \subset \text{co}^{\text{mat}}(\mathcal{A}).$$

Spectrahedrop example

Using HKM, one computes that if $\mathbf{P}_1 = \mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{P}_2 = \mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{P}_3 = \mathbf{A}_3 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, then $\mathcal{D}_{\mathcal{A}} = \text{proj}_2 \mathcal{D}_{\mathcal{P}}$.

One can verify this by checking that

$$L_{\mathcal{P}}(\mathcal{P}) \succeq 0 \quad \text{thus} \quad \mathcal{A} \in \text{proj}_2 \mathcal{D}_{\mathcal{P}} \quad \text{and} \quad \text{co}^{\text{mat}}(\mathcal{A}) \in \text{proj}_2 \mathcal{D}_{\mathcal{P}}.$$

Additionally, $\text{proj}_2 \mathcal{D}_{\mathcal{P}}(1) = \overline{\mathbb{D}}$, so maximality of $\text{co}^{\text{mat}}(\mathcal{A})$ gives

$$\text{proj}_2 \mathcal{D}_{\mathcal{P}} \subset \text{co}^{\text{mat}}(\mathcal{A}).$$

$\mathcal{D}_{\mathcal{P}}$ is not closed under complex conjugation! One has $\overline{\mathcal{P}} \notin \mathcal{D}_{\mathcal{P}}$.

Level 1 extreme points of real free spectrahedrops

Theorem [E Passer (in progress)]

Let \mathcal{D}_A be a bounded free spectrahedron that is closed under complex conjugation and let $\text{proj}_h \mathcal{D}_A$ be a spectrahedrop defined by \mathcal{D}_A . Then the classical extreme points of $\text{proj}_h \mathcal{D}_A(1)$ are free extreme points.

Level 1 extreme points of real free spectrahedrops

Theorem [E Passer (in progress)]

Let $\mathcal{D}_{\mathcal{A}}$ be a bounded free spectrahedron that is closed under complex conjugation and let $\text{proj}_h \mathcal{D}_{\mathcal{A}}$ be a spectrahedrop defined by $\mathcal{D}_{\mathcal{A}}$. Then the classical extreme points of $\text{proj}_h \mathcal{D}_{\mathcal{A}}(1)$ are free extreme points.

In the case of $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\mathbf{A}_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have seen $\mathcal{D}_{\mathcal{A}}^\circ = \text{co}^{\text{mat}} \mathcal{A}$.

Up to unitary equivalence \mathcal{A} is the only free extreme point of $\mathcal{D}_{\mathcal{A}}^\circ$, so it has no level 1 extreme points!

Polar duals of real free spectrahedra. The evils of the reals.

Theorem [E Passer (in progress)]

The polar dual of a real free spectrahedron is rarely a real free spectrahedron.

If $\mathcal{D}_{\mathcal{A}}$ is a real free spectrahedron and $\mathcal{D}_{\mathcal{A}}^\circ$ is the projection of a real free spectrahedron, then $\mathcal{D}_{\mathcal{A}}(1)$ must be a polyhedron, and \mathcal{A} must be unitarily equivalent to a tuple $\mathcal{B} \oplus \mathcal{C}$ where \mathcal{B} is a g -tuple of $g+1 \times g+1$ diagonal matrices.

Polar duals of real free spectrahedra. The evils of the reals.

Theorem [E Passer (in progress)]

The polar dual of a real free spectrahedron is rarely a real free spectrahedron.

If $\mathcal{D}_{\mathcal{A}}$ is a real free spectrahedron and $\mathcal{D}_{\mathcal{A}}^\circ$ is the projection of a real free spectrahedron, then $\mathcal{D}_{\mathcal{A}}(1)$ must be a polyhedron, and \mathcal{A} must be unitarily equivalent to a tuple $\mathcal{B} \oplus \mathcal{C}$ where \mathcal{B} is a g -tuple of $g+1 \times g+1$ diagonal matrices.

Proof sketch: The free extreme points of $\mathcal{D}_{\mathcal{A}}^\circ = \text{co}^{\text{mat}}(\mathcal{A})$ are (up to unitary equivalence) the irreducible direct summands of \mathcal{A} . Thus $\mathcal{D}_{\mathcal{A}}^\circ$ has only finitely many free extreme points. On the other hand, if $\mathcal{D}_{\mathcal{A}}^\circ$ is the projection of a real free spectrahedron, then it must have at least $g+1$ extreme points at level 1.

Polar duals of free polyhedra are projections of real free spectrahedra

Theorem [E Passer (in progress)]

Let \mathcal{A} be a tuple of real diagonal matrices and assume that $\mathcal{D}_{\mathcal{A}}$ is bounded. Then the real matrix convex set $\mathcal{D}_{\mathcal{A}}^{\circ}$ is the projection of a real free spectrahedron

The proof essentially follows from the fact that a polyhedron can be written as the projection of a simplex.

The projection constructed from our proof is different from projection constructed by the HKM algorithm.

Polar duals of free polyhedra are projections of real free spectrahedra

Theorem [E Passer (in progress)]

Let \mathcal{A} be a tuple of real diagonal matrices and assume that $\mathcal{D}_{\mathcal{A}}$ is bounded. Then the real matrix convex set $\mathcal{D}_{\mathcal{A}}^{\circ}$ is the projection of a real free spectrahedron

The proof essentially follows from the fact that a polyhedron can be written as the projection of a simplex.

The projection constructed from our proof is different from projection constructed by the HKM algorithm.

Question: The free spectrahedra appearing in the theorem statement are maximal free polyhedra. Must $\mathcal{D}_{\mathcal{A}}$ be a maximal free polyhedron if $\mathcal{D}_{\mathcal{A}}^{\circ}$ is the projection of a real free spectrahedron?

Free spectrahedrops without free extreme points

Theorem [E Passer (in progress)]

There exists a free spectrahedrop that is closed under complex conjugation but has no free extreme points.

Free spectrahedrops without free extreme points

Theorem [E Passer (in progress)]

There exists a free spectrahedrop that is closed under complex conjugation but has no free extreme points.

Proof sketch: Let $\mathcal{D}_{\mathcal{A}}$ be a closed complex free spectrahedron that has no free extreme points.

Using Hartz-Lupini 21, $K := \text{co}^{\text{mat}}(\mathcal{D}_{\mathcal{A}} \cup \overline{\mathcal{D}_{\mathcal{A}}})$ is a closed bounded matrix convex set.
Using, Helton-Klep-McCullough 17, K is also a free spectrahedrop.

K is closed under complex conjugation. Additionally, the free extreme points of K must be extreme points of free extreme points of $\mathcal{D}_{\mathcal{A}}$ or $\overline{\mathcal{D}_{\mathcal{A}}}$. But neither set has free extreme points!