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Convex Combinations

Given a set C ⊂ Rg and a finite collection of tuples {xℓ} ⊂ C where xℓ = (xℓ1, x
ℓ
2, . . . , x

ℓ
g )

and coefficients αℓ ≥ 0 a convex combination is a sum of the form

k∑
ℓ=1

αℓx
ℓ ∈ Rg such that

k∑
ℓ=1

αℓ = 1

The convex hull of a set C is the set of all convex combinations of C . Say C is convex if it
is closed under convex combinations.

A point x ∈ C is an extreme point of C if it cannot be expressed as a nontrivial convex
combination of elements of C .
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Convex sets have many nice properties

Theorem [Carathéodory (also see Krein-Milman)]

Let C ⊂ Rg be a closed bounded convex set. Then C is the convex hull of its extreme
points.

Furthermore, every element of C can be expressed as a convex combination of at most
g + 1 extreme points of C .
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Linear matrix inequalities give convex sets

A (monic) linear pencil is a matrix valued function LA of the form

LA(x) := Id −
g∑

j=1

Ajxj = Id − ΛA(x),

where A = (A1, . . . ,Ag ) with each Aj symmetric d × d and x = (x1, . . . , xg ) ∈ Rg

A Linear Matrix Inequality (LMI) is one of the form:

LA(x) ⪰ 0, i .e., LA(x) is positive semidefinite.

The set of solutions x above is a convex set called a spectrahedron. Spectrahedra are the
feasibility domains of convex optimization problems called semidefinite programs (SDP).
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Spectrahedron example

Take A1 =

(
1 0
0 −1

)
and A2 =

(
0 1
1 0

)
. Then

LA(x) = I2 −
(
1 0
0 −1

)
x1 −

(
0 1
1 0

)
x2 =

(
1− x1 −x2
−x2 1 + x1

)

Observe LA(x) ⪰ 0 IFF det(LA(x)) = 1− x21 − x22 ≥ 0. So LA(x) defines circle in R2.
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Dimension free sets

Let SMn(F)g denote g -tuples of self-adjoint n × n matrices over F. I.e. if X ∈ SMn(F)g
then

X = (X1,X2, . . . ,Xg )

where each Xi is a self-adjoint n × n matrix.

Our goal: Study solution sets of linear matrix inequalities over SM(F)g .

We will see F = R vs F = C can make a big difference.
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Free Linear matrix inequalities

A free (monic) linear pencil is a matrix valued function LA of the form

LA(X ) := Idn −
g∑

j=1

Aj ⊗ Xj = Idn − ΛA(X ),

where A ∈ SMd(F)g and X ∈ SMn(F)g . Here ⊗ denotes the Kronecker Product. E.g.

(
2 3
3 4

)
⊗
(
4 5
5 2

)
=

2

(
4 5
5 2

)
3

(
4 5
5 2

)
3

(
4 5
5 2

)
4

(
4 5
5 2

)


A Free Linear Matrix Inequality (LMI) is one of the form:

LA(X ) ⪰ 0.
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Free spectrahedra

For each fixed n the solution set

DA(n) = {X ∈ SMn(R)g : LA(X ) = Idn −
g∑

j=1

Aj ⊗ Xj ⪰ 0}

is called a free spectrahedron at level n.

The set DA = ∪nDA(n) ⊂ ∪nSMn(R)g is called a free spectrahedron.

If A a tuple of simultaneously diagonalizable matrices, then DA is called free polyhedron.
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Matrix Convex Combinations

Given a finite collection of tuples {X ℓ} ⊂ SM(F)g where X ℓ = (Xℓ
1, . . . ,X

ℓ
g ) ∈ SMnℓ(F)g ,

a matrix convex combination is a sum of the form

k∑
ℓ=1

V∗
ℓX ℓVℓ ∈ SMn(R)g such that

k∑
ℓ=1

V∗
ℓVℓ = In

Here the Vℓ are nℓ × n matrices which serve as convex coefficients, and

V∗
ℓX ℓVℓ = (V∗

ℓX
ℓ
1Vℓ, . . . ,V

∗
ℓX

ℓ
gVℓ).

For K ⊂ SM(F)g let comat(K ) denote the set of matrix convex combinations of K . Say K
is matrix convex if it is closed under matrix convex combinations, i.e., if K = comat(K ).

Say K is bounded if there exists a M ≥ 0 such that MI−
∑g

i=1X
2
i ⪰ 0 for all

X = (X1, . . . ,Xg ) ∈ K .
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Matrix convex combinations allow for convex combinations of tuples of different sizes

For example, if X 1 ∈ SMn1(F)g and X 2 ∈ SMn2(F)g and

V∗
1 = (In1 0n1×n2) and V∗

2 = (0n2×n1 In2),

then

V∗
1X 1V1 + V∗

2X 2V2 = X 1 ⊕X 2 =

(
X 1 0
0 X 2

)
and V∗

1V1 + V∗
2V2 = In1+n2 .

On the other hand, if X ∈ SMn(R)g , and V ∈ Fn×m and V∗V = Im, then

V∗XV ∈ SMm(R)g

is a matrix convex combination of X .
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Extreme points of matrix convex sets

Say X is a free (absolute) extreme point of K ⊂ SM(F)g if X cannot be expressed as a
nontrivial matrix convex combination of any elements of K .

If E ⊂ K and comat(E ) = K , then E must contain the free extreme points of K (up to
unitary equivalence).

If DA ⊂ SM(R)g is a real free spectrahedron, the the classical extreme points of DA(1)
are free extreme points of DA. The same is not true over C
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Free extreme points vs Free spectrahedra. The crimes of the complexes

Theorem [E-Helton 19]

Let DA ⊂ SM(R)g be a bounded real free spectrahedron and let X ∈ DA(n). Then X is a
free convex combination of free extreme points of DA whose sum of sizes is at most
n(g + 1).

Theorem [Passer 22]

There exist closed bounded complex free spectrahedra that have no free extreme points.
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Complex conjugation closed as the solution?

Theorem [E-Helton 19]

Let DA ⊂ SM(C)g be a bounded complex free spectrahedron and let X ∈ DA(n).
Additionally assume DA is closed under complex conjugation. Then X is a free convex
combination of free extreme points of DA whose sum of sizes is at most 2n(g + 1).

Complex conjugation closed is equivalent to assuming there exists a real matrix tuple B so
that DA = DB.

Complex conjugation closed is not necessary for free extreme to span a complex free
spectrahedron.
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Free spectrahedrops, polar duals, and real problems
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Free spectrahedrops a.k.a free spectrahedra shadows

Let A ∈ SMd(R)g and fix h < g . The free spectrahedrop projhDA is the coordinate
projection of the free spectrahedron DA onto its first h variables.

That is
projhDA := {X ∈ SM(R)h : ∃ Y s.t. LA(X ,Y) ⪰ 0}.

Question: Is a closed bounded free spectrahedrop that is closed under complex conjugation
the matrix convex hull of its free extreme points. We will prove: NO!
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Free polar duals and free spectrahedrops

The (classical) polar dual C • of a convex set C is

C • = {y ∈ Rg : 0 ≤ 1− ⟨x , y⟩ = Ly (x) for all x ∈ C} = ∩x∈CDx(1)

The free polar dual K ◦ of a matrix convex set K ⊂ SM(F)g is

K ◦ := {Y ∈ SM(F)g : LX (Y) ⪰ 0 for all X ∈ K} = ∩X∈KDX

Theorem [Helton-Klep-McCullough 17]

Let DA be a closed bounded free spectrahedron. Then D◦
A = comat(A). Moreover, D◦

A is
the projection of a closed bounded free spectrahedron. Furthermore, a spectrahdrop
representation can be computed algorithmically.
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Spectrahedrop example

Recall that if A1 =

(
1 0
0 −1

)
and A2 =

(
0 1
1 0

)
, then DA(1) = D.

In fact, one can show DA = comat(DA(1)), thus DA is the minimal matrix convex set
whose first level is D.

As a consequence, its free polar dual D◦
A = comatA is the maximal matrix convex set

whose first level is D. Furthermore, by HKM, comatA is a free spectrahedrop.
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Spectrahedrop example

Using HKM, one computes that if P1 = A1 =

(
1 0
0 −1

)
and P2 = A2 =

(
0 1
1 0

)
and

P3 = A3 =

(
0 i
−i 0

)
, then DA = proj2DP .

One can verify this by checking that

LP(P) ⪰ 0 thus A ∈ proj2DP and comat(A) ∈ proj2DP .

Additionally, proj2DP(1) = D, so maximality of comat(A) gives

proj2DP ⊂ comat(A).

DP is not closed under complex conjugation! One has P /∈ DP .
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Level 1 extreme points of real free spectrahedrops

Theorem [E Passer (in progress)]

Let DA be a bounded free spectrahedron that is closed under complex conjugation and let
projhDA be a spectrahedrop defined by DA. Then the classical extreme points of
projhDA(1) are free extreme points.

In the case of A1 =

(
1 0
0 −1

)
and A2 =

(
0 1
1 0

)
, we have seen D◦

A = comatA.

Up to unitary equivalence A is the only free extreme point of D◦
A, so it has no level 1

extreme points!
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Polar duals of real free spectrahedra. The evils of the reals.

Theorem [E Passer (in progress)]

The polar dual of a real free spectrahedron is rarely a real free spectrahedrop.

If DA is a real free spectrahedron and D◦
A is the projection of a real free spectrahedron,

then DA(1) must be a polyhedron, and A must be unitarily equivalent to a tuple B ⊕ C
where B is a g-tuple of g + 1× g + 1 diagonal matrices.

Proof sketch: The free extreme points of D◦
A = comat(A) are (up to unitary equivalence)

the irreducible direct summands of A. Thus D◦
A has only finitely many free extreme

points. On the other hand, if D◦
A is the projection of a real free spectrahedron, then it

must have at least g + 1 extreme points at level 1.
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Polar duals of free polyhedra are projections of real free spectrahedra

Theorem [E Passer (in progress)]

Let A be a tuple of real diagonal matrices and assume that DA is bounded. Then the real
matrix convex set D◦

A is the projection of a real free spectrahedron

The proof essentially follows from the fact that a polyhedron can be written as the
projection of a simplex.

The projection constructed from our proof is different from projection constructed by the
HKM algorithm.

Question: The free spectrahedra appearing in the theorem statement are maximal free
polyhedra. Must DA be a maximal free polyhedron if D◦

A is the projection of a real free
spectrahedron?
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Free spectrahedrops without free extreme points

Theorem [E Passer (in progress)]

There exists a free spectrahedrop that is closed under complex conjugation but has no free
extreme points.

Proof sketch: Let DA be a closed complex free spectrahedron that has no free extreme
points.

Using Hartz-Lupini 21, K := comat(DA ∪ DA) is a closed bounded matrix convex set.
Using, Helton-Klep-McCullough 17, K is also a free spectrahedrop.

K is closed under complex conjugation. Additionally, K the free extreme points of K must
be extreme points of free extreme points of DA or DA. But neither set has free extreme
points!
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