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Convex Combinations

Given a set C C IR€ and a finite collection of tuples {x‘} C C where x* = (x{, x5, ... ,xg)
and coefficients ay > 0 a convex combination is a sum of the form

k k
ZO[[XZ c R& such that Zae =1
(=1 =1

The convex hull of a set C is the set of all convex combinations of C. Say C is convex if it
is closed under convex combinations.

A point x € C is an extreme point of C if it cannot be expressed as a nontrivial convex
combination of elements of C.



Convex sets have many nice properties

Theorem [Carathéodory (also see Krein-Milman)]

Let C C R& be a closed bounded convex set. Then C is the convex hull of its extreme
points.

Furthermore, every element of C can be expressed as a convex combination of at most
g + 1 extreme points of C.



Linear matrix inequalities give convex sets

A (monic) linear pencil is a matrix valued function L 4 of the form
g
La(x) :=1g = > Ajxj = lg — Aa(x),
j=1
where A = (Ay,...,Ag) with each A; symmetric d X d and x = (x1,...,xg) € R&
A Linear Matrix Inequality (LMI) is one of the form:

La(x) =0, ie., La(x) is positive semidefinite.

The set of solutions x above is a convex set called a spectrahedron. Spectrahedra are the
feasibility domains of convex optimization problems called semidefinite programs (SDP).



Spectrahedron example

Take A = <é _01> and A, = <(1) (1)) Then

o . 1 0 . 01 . 1—X1 —X2
Lal) =1 <0 1>X1 <1 0>X2_<X2 1+x1>

Observe L 4(x) = 0 IFF det(La(x)) =1 — x? — x3 > 0. So L4(x) defines circle in R?.



Dimension free sets

Let SM,(F)& denote g-tuples of self-adjoint n x n matrices over F. l.e. if X € SM,(F)&
then
X = (X1, Xz,...,Xg)

where each X; is a self-adjoint n X n matrix.



Dimension free sets

Let SM,(F)& denote g-tuples of self-adjoint n x n matrices over F. l.e. if X € SM,(F)&
then
X = (X1, Xz,...,Xg)

where each X; is a self-adjoint n X n matrix.

Our goal: Study solution sets of linear matrix inequalities over SM(IF)8.

We will see F =R vs F = C can make a big difference.



Free Linear matrix inequalities

A free (monic) linear pencil is a matrix valued function L4 of the form

g
La(X) =g — > A; @ Xj = lgy — Aa(X),
j=1

where A € SMy(F)& and X € SM,(F)&. Here ® denotes the Kronecker Product. E.g.
4 5 4 5
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A Free Linear Matrix Inequality (LMI) is one of the form:
La(X) = 0.



Free spectrahedra

For each fixed n the solution set

Da(n) ={X € SMu(R)® : La(X) =gy — Zg:Aj ®X; = 0}
j=1

is called a free spectrahedron at level n.

The set D4 = UpDa(n) C Up,SM,(R)E is called a free spectrahedron.

If A a tuple of simultaneously diagonalizable matrices, then D 4 is called free polyhedron.



Matrix Convex Combinations

Given a finite collection of tuples {X*} C SM(F)& where X* = (X{,... ,Xg) € SM,,(F)s,
a matrix convex combination is a sum of the form

k k
> VX'V, € SMy(R)E suchthat > ViV, =1,
/=1 /=1

Here the V, are ny x n matrices which serve as convex coefficients, and

V; XV, = (ViX{Ve, ..., ViXEV)).



Matrix Convex Combinations
Given a finite collection of tuples {X*} C SM(F)& where X* = (X{,... ,Xg) € SM,,(F)s,
a matrix convex combination is a sum of the form

k k
> VX'V, € SMy(R)E suchthat > ViV, =1,
/=1 /=1

Here the V, are ny x n matrices which serve as convex coefficients, and

V; XV, = (ViX{Ve, ..., ViXEV)).

For K C SM(FF)# let co™(K) denote the set of matrix convex combinations of K. Say K
is matrix convex if it is closed under matrix convex combinations, i.e., if K = co™(K).

Say K is bounded if there exists a M > 0 such that Ml — Y% | X2 = 0 for all
X =(Xy,...,Xg) €K,



Matrix convex combinations allow for convex combinations of tuples of different sizes
For example, if X € SM,, (F)8 and X2 € SM,,(F)& and
VT = (Inl 0n1><n2) and V; = (0n2><n1 |n2)7

then

xt oo - .
VixVy + V32V, = Xt g a2 = < . X2> and  ViVi+ViVo =l 0.
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Matrix convex combinations allow for convex combinations of tuples of different sizes
For example, if X € SM,, (F)8 and X2 € SM,,(F)& and
VT = (Inl 0n1><n2) and V; = (0n2><n1 |n2)7

then

xt oo - .
VixVy + V32V, = Xt g a2 = < . X2) and  ViVi+ViVo =l 0.

On the other hand, if X € SM,(R)&, and V € F"*™ and V*V = |, then
V*XV € SMp(R)E

is a matrix convex combination of X.
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Extreme points of matrix convex sets

Say X is a free (absolute) extreme point of K C SM(IF)& if X cannot be expressed as a
nontrivial matrix convex combination of any elements of K.

If EC K and co™(E) = K, then E must contain the free extreme points of K (up to
unitary equivalence).

If D4 C SM(R)# is a real free spectrahedron, the the classical extreme points of D 4(1)
are free extreme points of D 4. The same is not true over C
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Free extreme points vs Free spectrahedra. The crimes of the complexes

Theorem [E-Helton 19]

Let Dy C SM(R)& be a bounded real free spectrahedron and let X € D (n). Then X is a

free convex combination of free extreme points of D 4 whose sum of sizes is at most
n(g +1).
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Free extreme points vs Free spectrahedra. The crimes of the complexes

Theorem [E-Helton 19]

Let Dy C SM(R)& be a bounded real free spectrahedron and let X € D (n). Then X is a

free convex combination of free extreme points of D 4 whose sum of sizes is at most
n(g +1).

Theorem [Passer 22]

There exist closed bounded complex free spectrahedra that have no free extreme points.
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Complex conjugation closed as the solution?

Theorem [E-Helton 19]

Let Dy C SM(C)& be a bounded complex free spectrahedron and let X € D 4(n).
Additionally assume D 4 is closed under complex conjugation. Then X is a free convex
combination of free extreme points of D 4 whose sum of sizes is at most 2n(g + 1).

Complex conjugation closed is equivalent to assuming there exists a real matrix tuple B so
that D4 = Dp.

Complex conjugation closed is not necessary for free extreme to span a complex free
spectrahedron.
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Free spectrahedrops, polar duals, and real problems
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Free spectrahedrops a.k.a free spectrahedra shadows

Let A € SMy(R)# and fix h < g. The free spectrahedrop proj,D 4 is the coordinate
projection of the free spectrahedron D 4 onto its first h variables.

That is
proj,Da = {X € SM(R)": 3 Y s.t. La(X,Y) = 0}.

Question: Is a closed bounded free spectrahedrop that is closed under complex conjugation
the matrix convex hull of its free extreme points. We will prove: NO!
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Free polar duals and free spectrahedrops

The (classical) polar dual C*® of a convex set C is

C*={yeRE:0<1—(x,y) = Ly(x) for all x € C} = NyecDx(1)

The free polar dual K° of a matrix convex set K C SM(F)# is

K®:={Y € SM(F)¢ : Ly(Y)>=0forall ¥ € K} = NxexDx
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Free polar duals and free spectrahedrops

The (classical) polar dual C*® of a convex set C is

C'={y €RE:0<1—(xy) = Ly(x)forall x € C} = NeecDx(1)

The free polar dual K° of a matrix convex set K C SM(F)# is

K :={Y € SM(F)¢: Ly(Y)>=0forall X € K} =NyexDx

Theorem [Helton-Klep-McCullough 17]

Let D4 be a closed bounded free spectrahedron. Then DS = co™(A). Moreover, D is

the projection of a closed bounded free spectrahedron. Furthermore, a spectrahdrop
representation can be computed algorithmically.

16



Spectrahedrop example

Recall that if A; = (é _01> and Ay = ((1) (1)) then Dy(1) = D.

In fact, one can show D4 = co™® (D 4(1)), thus D4 is the minimal matrix convex set

whose first level is D.

As a consequence, its free polar dual DY = co™@ 4 is the maximal matrix convex set
whose first level is D. Furthermore, by HKM, co™ A is a free spectrahedrop.
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Spectrahedrop example

Using HKM, one computes that if P; = A; = <

0 i

P; =A3 = <—i 0), then D4 = proj,Dp.

1
0

0

01
1) and P2 —A2 = <1 O> and
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Spectrahedrop example

Using HKM, one computes that if P; = A; = <1 01> and P, = A, = <(1) é) and

0 —
0 i
—i 0

P; =A3 = < ) then D4 = proj,Dp.

One can verify this by checking that

Lp(P)=0  thus A€ proj,Dp and  co™(A) € proj,Dp.

Additionally, proj,Dp(1) = D, so maximality of co™*(A) gives

proj,Dp C co™(A).
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Spectrahedrop example

Using HKM, one computes that if P; = A; = <1 01> and P, = A, = <(1) é) and

0 —

P;=A; = <_OI. (’)) then D4 = proj,Dp.

One can verify this by checking that

Lp(P)=0  thus A€ proj,Dp and  co™(A) € proj,Dp.

Additionally, proj,Dp(1) = D, so maximality of co™*(A) gives

proj,Dp C co™(A).

Dp is not closed under complex conjugation! One has P ¢ Dp.
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Level 1 extreme points of real free spectrahedrops

Theorem [E Passer (in progress)]

Let D4 be a bounded free spectrahedron that is closed under complex conjugation and let

proj,D 4 be a spectrahedrop defined by D 4. Then the classical extreme points of
proj,D.a(1) are free extreme points.
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Level 1 extreme points of real free spectrahedrops

Theorem [E Passer (in progress)]

Let D4 be a bounded free spectrahedron that is closed under complex conjugation and let
proj,D 4 be a spectrahedrop defined by D 4. Then the classical extreme points of
proj,D.a(1) are free extreme points.

In the case of A; = (1 L

_ O 1 o __ mat
0 _1> and A2—<1 0),we have seen D = co™' A.

Up to unitary equivalence A is the only free extreme point of D%, so it has no level 1
extreme points!
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Polar duals of real free spectrahedra. The evils of the reals.

Theorem [E Passer (in progress)]

The polar dual of a real free spectrahedron is rarely a real free spectrahedrop.

If Dy is a real free spectrahedron and DY is the projection of a real free spectrahedron,
then D 4(1) must be a polyhedron, and A must be unitarily equivalent to a tuple B @ C
where B is a g-tuple of g +1 x g + 1 diagonal matrices.
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Polar duals of real free spectrahedra. The evils of the reals.

Theorem [E Passer (in progress)]

The polar dual of a real free spectrahedron is rarely a real free spectrahedrop.

If Dy is a real free spectrahedron and DY is the projection of a real free spectrahedron,
then D 4(1) must be a polyhedron, and A must be unitarily equivalent to a tuple B @ C
where B is a g-tuple of g +1 x g + 1 diagonal matrices.

Proof sketch: The free extreme points of D% = co™**(.A) are (up to unitary equivalence)
the irreducible direct summands of A. Thus D% has only finitely many free extreme
points. On the other hand, if DS, is the projection of a real free spectrahedron, then it
must have at least g + 1 extreme points at level 1.
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Polar duals of free polyhedra are projections of real free spectrahedra

Theorem [E Passer (in progress)]

Let A be a tuple of real diagonal matrices and assume that D 4 is bounded. Then the real
matrix convex set D is the projection of a real free spectrahedron

The proof essentially follows from the fact that a polyhedron can be written as the
projection of a simplex.

The projection constructed from our proof is different from projection constructed by the
HKM algorithm.
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Polar duals of free polyhedra are projections of real free spectrahedra

Theorem [E Passer (in progress)]

Let A be a tuple of real diagonal matrices and assume that D 4 is bounded. Then the real
matrix convex set D is the projection of a real free spectrahedron

The proof essentially follows from the fact that a polyhedron can be written as the
projection of a simplex.

The projection constructed from our proof is different from projection constructed by the
HKM algorithm.

Question: The free spectrahedra appearing in the theorem statement are maximal free
polyhedra. Must D4 be a maximal free polyhedron if D% is the projection of a real free
spectrahedron?

21



Free spectrahedrops without free extreme points

Theorem [E Passer (in progress)]

There exists a free spectrahedrop that is closed under complex conjugation but has no free
extreme points.
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Free spectrahedrops without free extreme points

Theorem [E Passer (in progress)]

There exists a free spectrahedrop that is closed under complex conjugation but has no free
extreme points.

Proof sketch: Let D4 be a closed complex free spectrahedron that has no free extreme
points.

Using Hartz-Lupini 21, K := co™(D 4 UD,4) is a closed bounded matrix convex set.
Using, Helton-Klep-McCullough 17, K is also a free spectrahedrop.

K is closed under complex conjugation. Additionally, K the free extreme points of K must
be extreme points of free extreme points of D4 or D 4. But neither set has free extreme
points!
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