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Tensor decompositions recover amino acid mixtures

Represent our amino acid data as a multiindexed array 7 of size 201 x 61 x 2.
T approximately has “tensor rank” equal to 3.

T decomposes as
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Tensor decompositions recover amino acid mixtures

Represent our amino acid data as a multiindexed array 7 of size 201 x 61 x 2.
T approximately has “tensor rank” equal to 3.
T decomposes as
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The true concentrations are: Mixture 1: 0.424, 0.293, 0.283
Mixture 2: 0.333, 0.334, 0.333



Multidimensional arrays.
A tensor T is a multiindexed array of size R x R x K.
A4
S [
E.g., T € R3*3*2 defined by T(i,j, k) = i +j + k is the tensor with frontal slices
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The tensor product

Let ® denote the tensor outer product. That is, for vectors a,b € R” and ¢ € R¥ where
a=(a(1),a(2),...,a(R)), the tensor

a®b®ce RRXRXK

has i, j, k entry equal to

a(i)b(j)e(k)



The tensor product

Let ® denote the tensor outer product. That is, for vectors a,b € R” and ¢ € R¥ where
a=(a(1),a(2),...,a(R)), the tensor

a®b®ce RRXRXK

has i, j, k entry equal to

a(i)b(j)e(k)

E.g. the tensor product between vectors a,b € RF is equal to the matrix
a®@b=ab' e RF*R,

which has i, entry equal to a(i)b(j).

A tensor of the form a ® b ® c is called a rank one tensor.



Decompose tensor into canonical components.

Every tensor can be expressed as a sum of rank one tensors. E.g,
= ZT(/,], klei ® ej ® e.

However, this is not a minimal decomposition.

Canonical Polyadic Decomp. (CPD) expresses T as minimal sum of rank 1 terms.
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If L is as small as possible, then L is called the rank of 7.



Many differences between matrix and tensor rank

A tensor in RR*R*R is expected to have rank ~ R?/3.

Tensor rank depends on whether decomposition is over reals or complexes. E.g. there exist
tensors with complex rank 2 but real rank 3.

For low rank tensors (e.g. tensors with rank < R) which satisfy light assumptions, CPD is
unique.

The set of tensors of rank < L is not closed unless L = 1 or L is sufficiently large. E.g.
there exists a sequence of rank 2 tensors which converges to a rank 3 tensor.



Low rank CPD computation is a big industry...

Uniqueness of low rank canonical polyadic decompositions makes CPD a big tool in
applications.

Often tensor T is some low rank signal tensor. Decomposing this signal with CPD can
reveal component information. One example problem is blind source separation.

CPD has applications in machine learning, artificial intelligence, signal processing, data
science, chemometrics, biomath, etc.



but there can be some challenges.

Key issue: In practice only have access to a measurement 7 + A where A is noise.
However, 7 + A is not low rank.

Must compute a best low rank approximation to 7 + A/, but a best low rank
approximation can fail to exist due to nonclosedness of the set of low rank tensors.

If a best low rank approximation does not exist, then near optimal low rank approximations
exhibit undesirable properties.

Even if a best low rank approximation exists, if is NP-hard to compute. A popular strategy
is to use optimization initialized by an algebraic approximation.
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Example of tensor that does not have a best low rank approximation

Consider the 2 x 2 x 2 tensor S defined by

(Y st ()

S has rank 3 but is a limit of rank 2 tensors. In particular
o ®3 9)@)3 o 0 1 1 1/n
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This is bad news for interprgting component information, as the two components
—n(e1)®3 and n (e; + ) each approach having infinite magnitude as n grows.
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Tensors without best low rank approximations must exhibit diverging components

Suppose T € RR*RXK has rank L but is a limit of rank ¢ < L tensors 7("). Then the 7(")
must have (at least two) rank one terms whose norm goes to infinity.

Suppose toward a contradiction that

/
n) __ (n)
=37,
j=1

where each 7;(") is a rank one tensor and where supn{||7;(n)\|,:} < oo for each /.
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Tensors without best low rank approximations must exhibit diverging components
Suppose T € RR*RXK has rank L but is a limit of rank ¢ < L tensors 7("). Then the 7(")
must have (at least two) rank one terms whose norm goes to infinity.

Suppose toward a contradiction that

/
n) __ (n)
=37,
j=1

where each 7;(") is a rank one tensor and where supn{||7;(n)\|,:} < oo for each /.

Passing to a subsequence, each 7;(") converges to some 7; which also has rank one, hence

14
T=>_T.

j=1
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Nonclosedness of tensor of rank < R is due to geometry of rank one tensors
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Nonclosedness of tensor of rank < R is due to geometry of rank one tensors

A tensor has rank 2 means it is a linear combination of rank 1 tensors. l.e. it is on a line
between two rank one tensors.

Pa Ro
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Nonclosedness of tensor of rank < R is due to geometry of rank one tensors

The tensor X below is not rank 2 due to the horizontal asymptote for the set of rank 1
tensors. However, X is a limit of rank 2 tensors.

Pa Ro
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Changing the point of view

Bad instances for CPD have lead to the mathematical perspective that low rank CPD
approximation is a challenging, ill-posed problem. In practice CPD is often very successful.
Can we bridge the gap in perspective?
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Changing the point of view

Bad instances for CPD have lead to the mathematical perspective that low rank CPD
approximation is a challenging, ill-posed problem. In practice CPD is often very successful.

Can we bridge the gap in perspective?

“Theorem” (E-De Lathauwer) For many tensors occurring in applications, best low-rank
tensor approximation is well-posed in a mathematically quantifiable neighborhood around

the tensor.
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Symmetric slices and the spectral norm

Say a tensor 7 € RFR*R*K has symmetric frontal slices if the frontal slice T, is symmetric
foreach r =1,... K.

The spectral norm || T ||sp of T is the Frobenius norm of a best rank one approximation to

T.
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Spectral norm bound guaranteeing existence of best low rank approximation

Theorem [E-De Lathauwer]
Let T,N € RR*RXK and assume T has rank R and has SFS. If

K
[Wllsp < max min v’ (Z w(r)(T, + N,)) v

r=1

then T + N has a best rank R approximation among SFS tensors.

Here T, + N, denotes the rth frontal slice of 7 + N.
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Spectral norm bound guaranteeing existence of best low rank approximation

Theorem [E-De Lathauwer]

Let T,N € RR*RXK and assume T has rank R and has SFS. If

K
[Wllsp < max min v’ (Z w(r)(T, + N,)) v

r=1

then T + N has a best rank R approximation among SFS tensors.

Here T, + N, denotes the rth frontal slice of 7 + N.

Intuitively: If T has a positive definite slice mix, and the noise is small enough that it
cannot destroy the positivity, then a best low rank approximation exists.
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Spectral norm bound guaranteeing existence of best low rank approximation

Theorem [E-De Lathauwer]

Let T,N € RR*RXK and assume T has rank R and has SFS. If

K
|V ]|gp < max min v’ (Z w(r)(T, + N,)) v

wi=1vi=1 "\ =

then T + N has a best rank R approximation among SFS tensors.

Consequence: Suppose you have some noisy rank R tenor T 4+ N € RR*RXK and let T
be any rank R approximation to 7 + N If

K
I T+N —Tls < max min v’ (Zw(r)(T, + Nr)> v
r=1

lwl|=1 [lv[|=1

then 7 + A has a best rank R approximation.
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Computing our bound

Theorem [E-De Lathauwer]
Let T € RR*R*K and assume T has SFS. The quantity

K
LA (Z W Nr)> ’

r=1

is computable via semidefinite programming



Sharpness of the bound

Theorem [E-De Lathauwer]

Let T € RR*RXK and assume T has SFS rank R. Set

K
A = max min v’ w(r)(T,+N,) | v
[lw[[=1 [[v]|=1 (Z (n)( )>

r=1

and assume A, > 0. Then there exists a tensor Ny, € RF*XF*K with | NV, ||sp = A« such
that no linear combination of frontal slices of T + N, is positive definite.

Furthermore, if K = 2, then any open set containing T + N, contains a tensor which does
not have a best rank R approximation.
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Numerical experiments: Second order blind identification
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Bound sharpness vs. 4 x 4 x 2 tensors. Approximations of 7 + a/NV,

Min column angle quantiles

Max column norm quantiles
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Bound sharpness vs. 4 x 4 x 4 tensors. Approximations of 7 + a/N,

Min column angle quantiles
0.3 [ 40-0-0:0:0-0-0-0-0. ¢,
: 6‘

4

Norm
N oW

15 2
«@

Factor matrix error quantiles

5 L -©- ¢=09

£ 0.8 q=075 ©000000000

(0] 0.6 we@rg=05 9

S0 )

B 0.4 ¢ v

< 0.2 o° +*?

T Lyssdalfletieee et
0 5 1 15 2

«

Proportion of MLSVD cores with repeated
or complex generalized eigenvalues

1

$-o.
""°'°°0-¢.°_°

Proportion
© o oo
o O

24



Existence guarantees for unconstrained tensor decompositions

If 7 e RR¥RXK has rank R but does not have symmetric frontal slices, the the CPD of 7
can be seen as a joint generalized eigenvalue decomposition of (T1, T2,..., Tk)

We show that if 7 has rank R but is a limit of tensors of rank r < R, then T is defective
in the sense of this joint generalized eigenvalue problem.

In this case, every subpencil (7;,7;) is defective in the sense of the generalized eigenvalue
problem (i.e, has eigenvalues with algebraic multiplicity greater than geometric
multiplicity).

Perturbation theoretic bounds for the generalized eigenvalue problem therefore lead to
existence guarantees for the best low rank approximations of 7 + A where T has rank R.
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Generalized eigenvector decomposition (GEVD) gives CPD of a rank R tensor.
Recall the CPD of of rank R tensor 7 € RR*RxK is

R
Z a, b, ®c,.
r=1

Key idea: Columns of

0 T\
BT .= by --- bg ERRXR
4 .

are equal to eigenvectors of T;ng which in turn are equal to generalized eigenvectors of
the matrix pencil (T, T,), i.e. vectors x such that

Tix = Ay and Tox = Ny

— Generalized eigenvector decomp. of (T, T/) leads to CPD of 7.
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Small eigenvalue gaps lead to inaccuracy.

Gen. eigenvalues of (T, Ty) are interpreted as points on the unit circle. The pencil
(Tk, T¢) has R generalized eigenvalues.

) lllustration of generalized eigenvalues of (T, T)

® = generalized eigenvalue of (T, Ty).

The small gap between generalized eigenvalues
1 and 2 leads to instability in computing the
3 generalized eigenvectors vi and va.

Similar issues occur in the other clusters of
generalized eigenvalues.
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Using a single pencil causes instability

Projection of 7 = (T1,T»,..., Tk) to (Tk, T¢) is fundamental source of instability in
GEVD (quantified in work of Beltran, Breiding, Vannieuwenhoven).

Projection 7 to a pencil is equivalent to a projection of vectors ¢, € R¥ to R?
= Information is lost and distance between vectors decreases under projection.

We combat both sources of inaccuracy by using many pencils for CPD computation.
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Generalized EigenSpace Decomp: Improve accuracy by computing eigenspaces
corresponding to well separated eigenvalue clusters.

Clusters C1,C3,C3,Cy4 are well separated so can improve accuracy
by only computing the corresponding eigenspaces &1, &>, £3, Es.
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Use a new pencil to split eigenspaces!

Consider a new subpencil (T, T,). The eigenvectors of this pencil are the same as those
of (Tk, T¢), but the corresponding eigenvalues will lie in new positions on the unit circle.

The clusters Cj,C5,C5, Cy are well separated, so can compute the eigenspaces &1, &5, &5, 5.

Observe & = span{vi,vo} and £ = span{vy,v3,ve}. Thusvi =& NE;.
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GESD recursively deflates tensor rank.

In our implementation, GESD recursively writes T as a sum of tensors of reduced rank.

In the example, GESD would use &1, &>, 3, &4 to write the rank 10 tensor T as
T=T"+T*+T°+T"

where 71, 72,73 and T* have ranks 2,3,1 and 4, respectively. 71 can then be
decomposed into a sum of rank 1 tensors using the pencil (7,1, 7.}), etc.

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as described

above rather than working recursively.
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GESD vs direction of arrival retrieval
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Figure: GESD estimates the azimuths and elevations of the sources more accurately than GEVD,
and is only slightly slower. Left: mean relative errors over the sources of the estimated azimuths
(=) and elevations (= ==) for GEVD and the estimated azimuths (——) and elevations (== =)
for GESD. Right: computation time for both methods.
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GESD vs synthetic data
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Accuracy and speed against Rank 10 tensors of size 100 x 100 x 100 with highly correlated

factor matrix columns.
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