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Tensor decompositions recover amino acid mixtures

Represent our amino acid data as a multiindexed array T of size 201× 61× 2.

T approximately has “tensor rank” equal to 3.

T decomposes as

a1 ⊗ b1 ⊗
(
0.409
0.312

)
+ a2 ⊗ b2 ⊗

(
0.284
0.307

)
+ a3 ⊗ b3 ⊗

(
0.409
0.363

)

The true concentrations are: Mixture 1: 0.424, 0.293, 0.283
Mixture 2: 0.333, 0.334, 0.333
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Multidimensional arrays.

A tensor T is a multiindexed array of size R × R × K .

T = ∈ RR×R×K

E.g., T ∈ R3×3×2 defined by T (i , j , k) = i + j + k is the tensor with frontal slices

T1 := T (:, :, 1) =

3 4 5
4 5 6
5 6 7

 T2 := T (:, :, 2) =

is4 5 6
5 6 7
6 7 8


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The tensor product

Let ⊗ denote the tensor outer product. That is, for vectors a,b ∈ RR and c ∈ Rk where
a = (a(1), a(2), . . . , a(R)), the tensor

a⊗ b⊗ c ∈ RR×R×K

has i , j , k entry equal to
a(i)b(j)c(k)

E.g. the tensor product between vectors a,b ∈ RR is equal to the matrix

a⊗ b = abT ∈ RR×R .

which has i , j entry equal to a(i)b(j).

A tensor of the form a⊗ b⊗ c is called a rank one tensor.
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Decompose tensor into canonical components.

Every tensor can be expressed as a sum of rank one tensors. E.g,

T =
∑

T (i , j , k)ei ⊗ ej ⊗ ek .

However, this is not a minimal decomposition.

Canonical Polyadic Decomp. (CPD) expresses T as minimal sum of rank 1 terms.

T =
∑L

ℓ=1 aℓ ⊗ bℓ ⊗ cℓ = + · · · + =

If L is as small as possible, then L is called the rank of T .
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Many differences between matrix and tensor rank

A tensor in RR×R×R is expected to have rank ≈ R2/3.

Tensor rank depends on whether decomposition is over reals or complexes. E.g. there exist
tensors with complex rank 2 but real rank 3.

For low rank tensors (e.g. tensors with rank ≤ R) which satisfy light assumptions, CPD is
unique.

The set of tensors of rank ≤ L is not closed unless L = 1 or L is sufficiently large. E.g.
there exists a sequence of rank 2 tensors which converges to a rank 3 tensor.

8



Low rank CPD computation is a big industry...

Uniqueness of low rank canonical polyadic decompositions makes CPD a big tool in
applications.

Often tensor T is some low rank signal tensor. Decomposing this signal with CPD can
reveal component information. One example problem is blind source separation.

CPD has applications in machine learning, artificial intelligence, signal processing, data
science, chemometrics, biomath, etc.
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but there can be some challenges.

Key issue: In practice only have access to a measurement T +N where N is noise.
However, T +N is not low rank.

Must compute a best low rank approximation to T +N , but a best low rank
approximation can fail to exist due to nonclosedness of the set of low rank tensors.

If a best low rank approximation does not exist, then near optimal low rank approximations
exhibit undesirable properties.

Even if a best low rank approximation exists, if is NP-hard to compute. A popular strategy
is to use optimization initialized by an algebraic approximation.
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Example of tensor that does not have a best low rank approximation

Consider the 2× 2× 2 tensor S defined by

S(:, :, 1) =
(
0 1
1 0

)
S(:, :, 2) =

(
1 0
0 0

)

S has rank 3 but is a limit of rank 2 tensors. In particular

S = lim
n→∞

−n(e1)
⊗3 + n

(
e1 +

e2
n

)⊗3
= lim

n→∞

((
0 1
1 1/n

)
,

(
1 1/n

1/n 1/n2

))

This is bad news for interpreting component information, as the two components
−n(e1)⊗3 and n

(
e1 +

e2
n

)⊗3
each approach having infinite magnitude as n grows.
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Tensors without best low rank approximations must exhibit diverging components

Suppose T ∈ RR×R×K has rank L but is a limit of rank ℓ < L tensors T (n). Then the T (n)

must have (at least two) rank one terms whose norm goes to infinity.

Suppose toward a contradiction that

T (n) =
ℓ∑

j=1

T (n)
j

where each T (n)
j is a rank one tensor and where supn{∥T

(n)
j ∥F} < ∞ for each ℓ.

Passing to a subsequence, each T (n)
j converges to some Tj , which also has rank one, hence

T =
ℓ∑

j=1

Tj .
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Nonclosedness of tensor of rank ≤ R is due to geometry of rank one tensors
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Nonclosedness of tensor of rank ≤ R is due to geometry of rank one tensors

A tensor has rank 2 means it is a linear combination of rank 1 tensors. I.e. it is on a line
between two rank one tensors.
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Nonclosedness of tensor of rank ≤ R is due to geometry of rank one tensors

The tensor X below is not rank 2 due to the horizontal asymptote for the set of rank 1
tensors. However, X is a limit of rank 2 tensors.
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Changing the point of view

Bad instances for CPD have lead to the mathematical perspective that low rank CPD
approximation is a challenging, ill-posed problem. In practice CPD is often very successful.
Can we bridge the gap in perspective?

“Theorem” (E-De Lathauwer) For many tensors occurring in applications, best low-rank
tensor approximation is well-posed in a mathematically quantifiable neighborhood around
the tensor.
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Symmetric slices and the spectral norm

Say a tensor T ∈ RR×R×K has symmetric frontal slices if the frontal slice Tr is symmetric
for each r = 1, . . . ,K .

The spectral norm ∥T ∥sp of T is the Frobenius norm of a best rank one approximation to
T .
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Spectral norm bound guaranteeing existence of best low rank approximation

Theorem [E-De Lathauwer]

Let T ,N ∈ RR×R×K and assume T has rank R and has SFS. If

∥N∥sp < max
∥w∥=1

min
∥v∥=1

vT

(
K∑
r=1

w(r)(Tr +Nr )

)
v

then T +N has a best rank R approximation among SFS tensors.

Here Tr +Nr denotes the r th frontal slice of T +N .

Intuitively: If T has a positive definite slice mix, and the noise is small enough that it
cannot destroy the positivity, then a best low rank approximation exists.
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∥N∥sp < max
∥w∥=1

min
∥v∥=1

vT

(
K∑
r=1

w(r)(Tr +Nr )

)
v

then T +N has a best rank R approximation among SFS tensors.

Consequence: Suppose you have some noisy rank R tenor T +N ∈ RR×R×K , and let T̂
be any rank R approximation to T +N . If

∥T +N − T̂ ∥sp < max
∥w∥=1

min
∥v∥=1

vT

(
K∑
r=1

w(r)(Tr +Nr )

)
v

then T +N has a best rank R approximation.
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Computing our bound

Theorem [E-De Lathauwer]

Let T ∈ RR×R×K and assume T has SFS. The quantity

max
∥w∥=1

min
∥v∥=1

vT

(
K∑
r=1

w(r)(Tr +Nr )

)
v

is computable via semidefinite programming
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Sharpness of the bound

Theorem [E-De Lathauwer]

Let T ∈ RR×R×K and assume T has SFS rank R. Set

λ∗ = max
∥w∥=1

min
∥v∥=1

vT

(
K∑
r=1

w(r)(Tr +Nr )

)
v

and assume λ∗ ≥ 0. Then there exists a tensor N∗ ∈ RR×R×K with ∥N∗∥sp = λ∗ such
that no linear combination of frontal slices of T +N∗ is positive definite.

Furthermore, if K = 2, then any open set containing T +N∗ contains a tensor which does
not have a best rank R approximation.
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Numerical experiments: Second order blind identification
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Bound sharpness vs. 4× 4× 2 tensors. Approximations of T + αN∗
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Bound sharpness vs. 4× 4× 4 tensors. Approximations of T + αN∗
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Existence guarantees for unconstrained tensor decompositions

If T ∈ RR×R×K has rank R but does not have symmetric frontal slices, the the CPD of T
can be seen as a joint generalized eigenvalue decomposition of (T1,T2, . . . ,TK )

We show that if T has rank R but is a limit of tensors of rank r < R, then T is defective
in the sense of this joint generalized eigenvalue problem.

In this case, every subpencil (Ti , Tj) is defective in the sense of the generalized eigenvalue
problem (i.e, has eigenvalues with algebraic multiplicity greater than geometric
multiplicity).

Perturbation theoretic bounds for the generalized eigenvalue problem therefore lead to
existence guarantees for the best low rank approximations of T +N where T has rank R.
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Generalized eigenvector decomposition (GEVD) gives CPD of a rank R tensor.

Recall the CPD of of rank R tensor T ∈ RR×R×K is

R∑
r=1

ar ⊗ br ⊗ cr .

Key idea: Columns of

B−T :=

 ↑ ↑
b1 · · · bR
↓ ↓

−T

∈ RR×R

are equal to eigenvectors of T−1
k Tℓ which in turn are equal to generalized eigenvectors of

the matrix pencil (Tk ,Tℓ), i.e. vectors x such that

Tkx = λky and Tℓx = λℓy

=⇒ Generalized eigenvector decomp. of (Tk ,Tℓ) leads to CPD of T .
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Small eigenvalue gaps lead to inaccuracy.

Gen. eigenvalues of (Tk ,Tℓ) are interpreted as points on the unit circle. The pencil
(Tk ,Tℓ) has R generalized eigenvalues.

     = generalized eigenvalue of              .

The small gap between generalized eigenvalues 
1 and 2 leads to instability in computing the 
generalized eigenvectors        and      . 

Similar issues occur in the other clusters of 
generalized eigenvalues.
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EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.
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Using a single pencil causes instability

Projection of T ∼= (T1,T2, . . . ,TK ) to (Tk ,Tℓ) is fundamental source of instability in
GEVD (quantified in work of Beltrán, Breiding, Vannieuwenhoven).

Projection T to a pencil is equivalent to a projection of vectors cr ∈ RK to R2

=⇒ Information is lost and distance between vectors decreases under projection.

We combat both sources of inaccuracy by using many pencils for CPD computation.
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Generalized EigenSpace Decomp: Improve accuracy by computing eigenspaces
corresponding to well separated eigenvalue clusters.

Clusters C1, C2, C3, C4 are well separated so can improve accuracy
by only computing the corresponding eigenspaces E1, E2, E3, E4.
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Use a new pencil to split eigenspaces!

Consider a new subpencil (Tm,Tn). The eigenvectors of this pencil are the same as those
of (Tk ,Tℓ), but the corresponding eigenvalues will lie in new positions on the unit circle.

The clusters C′
1, C′

2, C′
3, C′

4 are well separated, so can compute the eigenspaces E ′
1, E ′

2, E ′
3, E ′

4.

Observe E1 = span{v1, v2} and E ′
1 = span{v1, v3, v6}. Thus v1 = E1 ∩ E ′

1. 30



GESD recursively deflates tensor rank.

In our implementation, GESD recursively writes T as a sum of tensors of reduced rank.

In the example, GESD would use E1, E2, E3, E4 to write the rank 10 tensor T as

T = T 1 + T 2 + T 3 + T 4

where T 1, T 2, T 3 and T 4 have ranks 2, 3, 1 and 4, respectively. T 1 can then be
decomposed into a sum of rank 1 tensors using the pencil (T 1

m, T 1
n ), etc.

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as described

above rather than working recursively.
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GESD vs direction of arrival retrieval
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Figure: GESD estimates the azimuths and elevations of the sources more accurately than GEVD,
and is only slightly slower. Left: mean relative errors over the sources of the estimated azimuths
( ) and elevations ( ) for GEVD and the estimated azimuths ( ) and elevations ( )
for GESD. Right: computation time for both methods.
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GESD vs synthetic data
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